Committee for Male Contraceptive Development and Regulatory Best Practices

Draft Recommendations

Quick Summary:

- Draft recommendations from the *Committee for Male Contraceptive Development and Regulatory Best Practices* are <u>available for public comment</u>*.
- We encourage you and others within your network to review these recommendations to ensure that the document is comprehensive and representative.
- Both general feedback on the document and targeted review and comments on specific sections are welcomed.

Dear Colleagues:

As you may be aware, Male Contraceptive Initiative has convened a committee of experts to evaluate the male contraceptive development space and make recommendations that will guide developers and regulatory authorities, ensuring the advancement and registration of safe and effective products. This committee (*Committee for Male Contraceptive Development and Regulatory Best Practices*), composed of basic scientists, clinical investigators, a bioethicist, consultants (pharma; regulatory; ex-FDA), device experts, and patient advocate(s), has been working since August 2024 to generate a comprehensive list of recommendations under the leadership of Committee Co-Chairs: Erin R. Gardner, PhD (Gardner Pharmacology, LLC) and Gregory S. Kopf, PhD (Sacyl Pharmaceuticals, Inc.).

We are pleased to announce that the draft report has been completed and is now available for public review and comment. This open call for comment is a critical step in shaping these recommendations. Your feedback will help ensure that the most comprehensive and relevant considerations are reflected, ultimately supporting more efficient and effective development and regulatory pathways for male contraceptive products.

A discussion forum has been established on the *Discourse* platform. To access the document and provide your feedback, please follow this link*. You will need to create an account to access the forum, after which point you will be directed to the forum page.

To help ensure a productive and organized review process, we kindly ask that you follow the instructions below when submitting comments:

• Please provide your feedback using the comment box on the forum page.

^{*}Link: https://mci.discourse.group/t/request-for-comment-draft-guidance-from-the-committee-for-male-contraceptive-development-and-regulatory-best-practices/9

- Refer to specific line numbers whenever possible to help us accurately identify, understand and incorporate your input.
- Please include your name and affiliation with your comment.
- We welcome comments based on your area of expertise, including feedback on specific sections or topics. General feedback on the entire document is also appreciated.
- If you have extensive comments, a response letter, or supplementary materials, you may upload them using the paperclip icon in the comment box.

If you have further questions or any issues accessing the forum, please contact guidance@malecontraceptive.org.

We would like to thank the Committee and the Leadership Team for their extraordinary effort in support of this activity. We are truly grateful for your time, expertise, and partnership.

Leadership Team:

Erin R. Gardner, PhD Gregory S. Kopf, PhD Will Skinner, PhD Heather Vahdat, MPH

Committee Members:

John Amory, MD, MPH
Jochen Buck, MD, PhD
Vargheese Chennathukuzhi, PhD
Lisa Campo-Engelstein, PhD
Chris DeJonge, PhD, HCLD
Julie Dumond, PharmD, MS
Kevin Eisenfrats, BA
Gary Gamerman, MS, JD
Shefali Goyal, MS
William Kelce, MS, PhD
Lonny R Levin, PhD
Nadja Mannowetz, PhD
Ajay Nangia, MD
Logan Nickels, PhD

Special Thanks to the following Patient Advocates:

Joseph Guy Gibboney Logan Whitehead Kyle Orwig, PhD
Stephanie Page, MD, PhD
Alexander Pastuszk, MD, PhD
Giovanni Pauletti, MPharm, PhD
Reshma Ramachandran, MD, MPP, MHS
Lisa Rohan, PhD
Regine Sitruk-Ware, MD
Lisa Soule, MD
Douglas Taylor, PhD
Alexander Travis, VMD, PhD
Yelena Tropsha, PhD
Marcel VanDuin, PhD
Darlene Walley, PhD
Michael Zitzmann, MD

Table of Contents

Introduction and Background	1
Preclinical Evaluation of Male Contraceptives	5
Drug Repurposing	17
On-Demand Contraceptive Drug Development	21
Biomarkers	25
Global Considerations	33
Study Participants	37
Clinical Sperm Parameters	44
Acceptable Efficacy	52
Pregnancy Testing and Management	55
Evaluation of Clinical Efficacy	60
Clinical Safety	67
Benefit-Risk Considerations	73
References	86

Introduction and Background

1 2

3

4

56

7

8

9

10

11

12

13

14

1516

17

18 19

20

2122

2324

The introduction of the first contraceptive pill in 1960 ushered in unprecedented agency for women to control their reproductive autonomy and resulted in a dramatic societal shift in proactive family planning.^{1,2} Over the subsequent six decades, options for females have greatly expanded to include many hormonal (pills, patches, implants, rings, intrauterine systems) and nonhormonal (barrier methods, intrauterine devices, intravaginal gels) contraceptive modalities.³ Despite these advances, nearly 50% of all pregnancies worldwide are still unintended,⁴ and over half of these unintended pregnancies result in abortion.⁵

Unintended pregnancies cause a wide variety of long-lasting negative effects on the health and socioeconomic status of women, men, and the resulting children⁶ and cost governments many billions of dollars each year. One factor leading to the stubbornly high unintended pregnancy rate is limited contraceptive uptake among women, due to access barriers, improper product use, and early discontinuation. It is estimated that approximately 30-50% of women discontinue using hormonal contraceptives within the first year of use due to side effects (e.g. mood changes, weight gain, irregular bleeding, and reduced libido) or fear of long-term health risks. 8,9 Another critical but oftenoverlooked factor driving the high unintended pregnancy rate is the fact that men, half of the world's population, still have no pharmaceutical options for contraception. Even with conservative assumptions, modeling has shown that the introduction of male contraception would prevent hundreds of thousands of unintended pregnancies per year in the United States, Nigeria, and South Africa.¹⁰ These statistics speak to the need for additional contraceptive options for all people at all stages of their reproductive lives, and this has been of interest to both international funding agencies and the pharmaceutical industry.³

Although there are a plethora of contraceptive options for females, the options for male contraceptives have not changed in over a century. The sole contraceptive options for males are vasectomy and condoms, and both have their limitations. Vasectomy is nearly 100% effective (failure rate ~0.15%)¹¹ but requires a surgical procedure and reversibility is not guaranteed.¹² Condoms offer user-controlled, on-demand contraception, but men and women often dislike their use, leading to a yearly failure rate of 13% largely due to non-adherence or incorrect use.¹³ For these reasons, as with female contraceptives, there is a significant unmet need for new contraceptive options for males. Moreover, new methods would increase reproductive autonomy for males, provide additional contraceptive options for couples and would likely reduce unintended pregnancies and abortions.

25

26

27

2829

30

31

3233

34

35

36

37

38

39

40

41

42

43

4445

46

47

48

49

50

51

5253

Recognizing the need for new male contraceptive methods, funding organizations such as the Eunice Kennedy Shriver National Institute of Child Health and Development and the <u>Male Contraceptive Initiative</u>, among others, have provided funding for the development of new and innovative male hormonal and nonhormonal contraceptives. The development of new male contraceptive methods can be traced back to 1939 when testosterone supplementation was first shown to result in reversible suppression of sperm production.¹⁴ Subsequent work has focused on androgens as single agents or in combination with progestins or hormone receptor modulators, administered through a variety of routes, and it has been reliably shown that these products can reversibly suppress sperm concentrations in humans to contraceptive levels. 15-17 Fast forward to today, a hormonal male contraceptive transdermal gel containing an androgen (testosterone) and a progestin (segesterone acetate, aka Nestorone®) has completed phase 2 clinical trials.¹⁸ This formulation represents the furthest advanced new male contraceptive currently in development, but other hormonal male contraceptives are currently in earlier phases of clinical development. 19,20 Hormonal approaches to male contraception may result in systemic side effects consistent with their pharmacological mode of action which could ultimately limit market uptake, although similar side-effects are well accepted by women using hormonal contraceptives.

Advancements in biomedical science (e.g., animal and human genome sequencing and curation; a greater understanding of basic reproductive biology; reverse/forward genetic methods; new analytical methods) over the past decades have identified genes/gene products that play critical roles in both male and female reproduction. ^{21–23} Such progress has allowed the biomedical community to develop highly specific nonhormonal male and female contraceptives that target gene products that play key roles in reproduction and that do not function by modulating the hypothalamic-pituitary-gonadal axis, and thus the regulation of systemic sex hormones.²² Unlike hormonal methods that modulate the expression of many genes, nonhormonal approaches are anticipated to lack pleiotropic effects as 'on target' activity is expected to occur exclusively or primarily at the site of target protein expression, which for male contraceptives is often limited to or enriched in testes or sperm.²⁴ This has the promise of improved safety and side effect profiles, likely facilitating greater user uptake. Moreover, advances in drug development (e.g., screening platforms; medicinal chemistry; use of artificial intelligence) and biomedical engineering/materials science (e.g., drug delivery platforms) offer new and innovative approaches to develop and deliver new generations of contraceptives.

5455

56

57

58

59

60

61

62

63

64

6566

67

68

69

70

71 72

7374

75

76

77

78

79

80

81

82

83

8485

8687

88

89

90

Although the opportunities for the development of innovative nonhormonal contraceptives can be facilitated by the aforementioned scientific advances, a major question is whether there is a market for such products. Even a great product cannot succeed if there is no market for it. Several observations suggest that new classes of nonhormonal contraceptives, be they for males or females, would be widely adopted. First, the current societal and financial burden to economies of unplanned pregnancies is well known. According to a 2022 report of the U.S. Joint Economic Committee, of the over 47 million Americans aged 15-49 who relied on contraceptives, there is still a yearly unintended pregnancy rate of 45%, with an associated economic burden of the resultant births, abortions, and miscarriages of \$21 billion.²⁵ It has been clearly shown that access to modern contraceptives and their proper use has socioeconomic benefits not only in the US but globally (Finer and Sonfield, 2013).⁶ In addition, several studies have demonstrated that there is global interest in new male contraceptive options, that women in stable relationships would trust men to share responsibility for contraception, and that the economics of male contraception would make it an attractive area for pharmaceutical development.^{26–29} Moreover, discussions with male participants in recent male hormonal contraceptive clinical trials and their female partners have revealed a great interest in new male contraceptive products and an eagerness to continue using them if they were on the market. Despite this, appreciation by investors and the pharmaceutical industry is lagging behind. Towards this end it will be important to create Target Product Profiles that are commercially viable and are acceptable for insurance and reimbursement plans.

The current pipeline of male nonhormonal contraceptives contains drugs and devices in various stages of preclinical and early clinical development. Two companies are developing reversible vas deferens occlusion devices.³⁰ Several drug programs are targeting gene products that play various roles in testicular sperm development and other programs are developing drugs that interfere with extra-testicular sperm function.²³ Discussions with developers have suggested that because of the uniqueness of the male contraceptive indication and the first-in-class nature of the products in development, the entire field could benefit from recommendations to guide their development pathways in a more time- and cost-effective manner. Regulators have had limited experience with male contraceptive products and often rely on the well-established regulatory guidelines governing hormonal female contraceptives, which are not necessarily applicable to male methods.

Recognizing the need for product development and regulatory guidelines for male contraceptive development, the Male Contraceptive Initiative initiated discussions with thought leaders in the contraceptive development space. A committee was formed, comprised of global experts in contraceptive research and development, academia, regulatory science, the pharmaceutical industry, and the global health spaces. The Committee for Male Contraceptive Development and Regulatory Best Practices (The Committee) has been meeting for the past 11 months and has developed the following guidelines for developers of male contraceptives and recommendations for regulators to consider as part of their engagement with developers. These guidelines and recommendations are intended to support developers and regulatory agencies in establishing official guidelines for male contraceptives. The Committee considers your input to its work as a critical part of its mission and would greatly appreciate your thoughts.

Comments can be <u>submitted here</u> any time before October 15th.

Thank you for your consideration.

Preclinical Evaluation of Male Contraceptives

There is a widespread perception among developers that the regulatory pathway for male contraceptives, especially non-hormonal methods, is unclear and overly burdensome compared to other product types. The lack of published male-specific regulatory guidance compounds that perception. The scientific bar is also unusually high: a preventive intervention for healthy men, targeting a physiological process that must be substantially, if not entirely, suppressed for efficacy and should be fully reversible. In addition, the most visible endpoint – prevention of pregnancy – occurs outside of the individual receiving the intervention.

To support the emerging field of non-hormonal male contraceptive development, the committee strongly recommends the publication of comprehensive guidance to assist early-stage product developers in designing rational, effective preclinical programs. Developers entering this space—often from academic or discovery research focused settings—face a steep learning curve, with limited infrastructure for regulatory support. Many are encountering Investigational New Drug (IND)-enabling requirements for the first time, and they would benefit from direction and shared learnings, particularly regarding animal model selection, mating study design, and reversibility assessment.

In the preclinical setting, developers must conduct animal studies to evaluate numerous domains, including: pharmacokinetics (PK); pharmacodynamics (PD), which includes efficacy and reversibility; reproductive and developmental toxicity; general toxicity (acute, subchronic, and chronic); safety pharmacology; genotoxicity; and sensitization. Not all of these studies must be fully completed before initiating first-in-human studies—nonclinical development is inherently iterative. However, demonstrating in vivo contraceptive efficacy and reversibility in at least one non-human species is a critical early milestone. The choice of animal models and endpoints should be thoughtfully aligned with the product's mechanism of action and route of administration.

Good Laboratory Practice (GLP)-compliant safety toxicology studies are required for IND submission and are designed to evaluate adverse effects at a maximum tolerated dose (MTD), to determine the no-observed-adverse-effect level (NOAEL) used to estimate the maximum safe starting dose in initial clinical trials and guide subsequent trial design, as described in the globally adopted ICH guidance M3(R2).³¹

Minimizing animal studies is an ethical and scientific imperative, as well as a financial one. Well-designed preclinical studies—those with clearly justified species selection, appropriate endpoints, and alignment with the anticipated clinical context—support both humane science and efficient regulatory progression. As male contraceptive

development evolves, developers should look to adjacent disciplines for insights—such as assisted reproduction, urology, and animal breeding sciences—particularly in areas like semen collection and fertility assessment. By sharing knowledge across disciplines and being more transparent about preclinical strategies, the entire field can benefit and avoid unnecessary duplication or wasted resources.

Given the limited number of male contraceptive products that have reached clinical trials, developers must be the experts in their targets, products, and animal models, as well as deepen their knowledge of key aspects of drug development. Clear, data-driven rationales are essential not only for study design but also for facilitating review by regulatory agencies that may lack specific familiarity with this product class.

Recommendation: Developers should prioritize target identification and mechanistic understanding to focus decision-making and streamline preclinical and clinical development.

• For potential male contraceptive drugs discovered via phenotypic screening or through repurposing after observations of infertility in other studies, gaining an understanding of the molecular target is critical to rational product development. Identifying the mechanism of action enables the design of studies that are appropriately tailored to the product's pharmacology and anticipated risks, allows for more efficient selection of relevant animal models, and supports the development of suitable biomarkers or surrogate endpoints.

 • When the target is undefined, significant resources may be wasted as efficacy might be evaluated in animal models that may not even express the target, leading to inconclusive outcomes. Embarking on toxicity studies without an understanding of target expression, specificity, or how to distinguish on-target and off-target effects is likely to yield findings that are difficult to interpret. Without target-based justification for species selection, regulators may attribute an apparently non-toxic profile to poor model relevance rather than true safety and therefore request additional toxicity studies. While some agents may enter development based solely on compelling empirical efficacy data, continuing without mechanistic insight typically results in recurring challenges as development progresses. Whenever feasible, investment in target deconvolution should be undertaken as early as possible to inform downstream development decisions.

Recommendation: Following demonstration of *in vitro* activity, developers should conduct *in vivo* studies to evaluate contraceptive efficacy. Animal species selection should be guided by target expression, reproductive physiology, and feasibility of study endpoints. While mating studies are often considered the gold standard for assessing functional fertility, surrogate endpoints, such as sperm parameters, may also be appropriate.

- Once *in vitro* assays suggest potential efficacy, developers must transition to animal models to confirm contraceptive effects *in vivo*. Selection of an appropriate animal model is pivotal and should prioritize biological relevance (such as target expression), adequate PK and potency, comparable reproductive physiology, and logistical feasibility.
- For on-demand agents expected to require only one administration for activity, developers with validated targets often proceed directly to dosing animals and evaluating fertility outcomes after a single dose.
- For agents intended to inhibit the complex process of spermatogenesis, longer-term dosing is required. Developers should first conduct preliminary PK studies in the chosen animal model to optimize dosing frequency and ensure sufficient drug exposure to produce an effect. Additionally, animals will need to be monitored throughout at least one complete cycle of spermatogenesis, which can range from approximately 35 days in mice to approximately 60 days in dogs. These timelines are essential for interpreting reductions in sperm count.
- Rodents (e.g., mice and rats) are commonly used for early-stage evaluations of new drugs because of their small size (minimizing test article requirements), cost efficiency, and ease of handling. However, a significant limitation is that semen cannot be directly collected for *ex vivo* sperm parameter analyses without sacrificing the animal. In these species, sperm must be recovered from the cauda epididymis, making this a terminal procedure and precluding longitudinal monitoring within an individual animal. Additionally, epididymal sperm may not adequately represent ejaculated sperm, especially for products where the mechanism of action may be impacted via interaction with seminal plasma or accessory gland secretions. Alternatively, some researchers have retrieved sperm from the reproductive tract of female mice after copulation, but this is also a terminal procedure.^{32–34}

229

232

233

234

235

236

237238

239240

241

242243

244245

246

247

248

249250

251

252

253

254255

256

257

258

259

260

261

262

263

264

265

266

- In larger animal species such as rabbits, dogs, pigs, and non-human primates (NHPs), true ejaculates can be collected using methods such as:
 - <u>Electroejaculation</u>: Applicable across multiple species, including rabbits, dogs, pigs, and NHPs; allows for collection with limited behavioral training, though may require anesthesia and has limits on frequency (typically once weekly) due to stress and sedation requirements, depending on whether penile or anal stimulation is utilized.³⁵
 - Penile Vibrational Stimulation: Used in small NHPs such as marmosets and squirrel monkeys.³⁶
 - Artificial vagina: Used primarily in rabbits, dogs, boars, and certain NHPs; yields physiologically representative samples but requires substantial training and handling. In rabbits, the use of this method (along with a teaser female) can allow for multiple collections per day, which may be highly beneficial for on-demand products requiring more frequent and precise time points.³⁷
 - Manual stimulation: Feasible in species like dogs and boars; less commonly used elsewhere.³⁸
 - Although there are few publications detailing the use of different species in assessing the efficacy of novel male contraceptives, numerous animal species have been used broadly in medical research and can potentially be adapted to study contraceptives. For example, in addition to their routine use for IND-enabling toxicology studies, dogs have been widely used in urological research due to their comparable anatomy and physiology to humans. The similarity in size of the canine vas deferens to that in humans has led to the use of this animal model for testing vas occlusive devices.^{39,40} Rabbits have been used extensively for reproductive health studies and are well-accepted by regulators for toxicology studies, as well as in vivo assessment of vaginal irritation. 41,42 Pigs, especially minipigs such as the Göttingen strain, are utilized for evaluating both transdermal absorption and dermal sensitivity (due to similarity with human skin), in addition to their use for testing medical devices, such as cardiac implants (due to comparable heart size). 43,44 There is additional relevant expertise that can potentially inform animal models for the development of male contraceptives, particularly from fields such as veterinary reproduction and farm animal husbandry, where semen collection, fertility assessment, and breeding optimization are routine practices. While outside the

traditional contraceptive domain, these practical methods and physiological insights can offer valuable lessons.⁴⁵

• There is a perception in the field that demonstrating contraceptive efficacy in NHPs is superior to performing efficacy studies in other mammals, possibly based on historical usage and parallels with human physiology. Some potential male contraceptive targets (such as KLK3/PSA) only have orthologs in primates, so a justification could be made, but widespread use is typically not scientifically justifiable. The continued expectation of NHP data appears to stem from potential investors, despite regulatory discouragement.

• Mating studies are often considered definitive for demonstrating contraceptive efficacy, but their success can be highly variable. Key considerations for developers include:

o <u>Pregnancy rates in naïve animals</u>: Untreated or placebo-treated controls must exhibit consistently high baseline pregnancy rates so that any reduction in fertility observed in the treatment group can be confidently attributed to the investigational contraceptive. However, there are numerous factors that impact the likelihood of mating success that developers must consider. For example, some species naturally achieve higher pregnancy rates due to repeat matings or prolonged mating windows, which may not be suitable for evaluating on-demand products. When untreated C57BL/6J mice were paired overnight, they achieved a pregnancy rate of 80%, but this fell to just 30% when mating was restricted to a 2-hour early evening window (4-6 pm).⁴⁶

 Variation in reproductive biology across species: This encompasses factors related to reproductive anatomy and physiology, including ovulation mechanisms (spontaneous in mice, while rabbits are reflex ovulators), sperm deposition and transport, semen viscosity and vaginal pH, frequency and duration of estrus, as well as seasonal breeding patterns.^{47,48}

 Behavioral compatibility and sexual receptivity: This can vary across strains and individual animals, and be affected by environmental conditions.^{49,50}

These factors introduce a risk of experimental failure that may not reflect a lack of efficacy, but rather suboptimal mating conditions or, worse, a successful study that does not consider critical biological differences

between humans and the species tested. For this reason, developers must carefully evaluate whether natural mating is appropriate and informative for their product. When not feasible, surrogate endpoints such as sperm concentration, motility, hyperactivation, capacitation competence, and acrosome status—collected from ejaculated semen—may be superior for evaluating contraceptive efficacy in the preclinical realm, provided they are mechanistically linked to the product's action.

• Although *in vivo* evidence of efficacy is often valuable for bolstering developer confidence and supporting regulatory submissions, committee members emphasized that it should not be regarded as an absolute requirement. When no suitable animal model exists and a candidate drug shows no toxicological concerns, along with a strong scientific rationale for human activity, it may be reasonable to advance directly to first-in-human exploratory studies to observe the effect, rather than insisting on animal efficacy data of limited translational value.

Recommendation: Developers of drugs targeting outcomes other than azoospermia can advance decision making by establishing product-specific biomarkers and contraceptive thresholds of fertility, informed by PK-PD relationships and the biology of the selected test species.

- Most existing animal studies on male fertility have been designed either to maximize breeding success (e.g., in livestock production) or to detect reproductive toxicity, rather than to establish specific thresholds of sperm parameters, such as motility, below which fertility is predictably impaired. As a result, there is limited guidance on what constitutes a sufficient reduction in sperm count, motility, or function to achieve contraceptive efficacy in various species.
- While azoospermia (absence of sperm in semen) represents an unambiguous and broadly accepted endpoint, many male contraceptive candidates—particularly those that do not act via obstruction or inhibition of spermatogenesis—will benefit from alternative or more nuanced pharmacodynamic biomarkers. These biomarkers may include parameters related to motility, capacitation, acrosome reaction, or sperm-egg interaction. For products that suppress spermatogenesis, but may not entirely eliminate sperm from the ejaculate, sperm count thresholds that reliably prevent pregnancy have not been systematically defined and may vary considerably between species—and even between strains within a

species—due to inherent differences in reproductive physiology, mating behavior, and fecundity. Sperm morphology varies significantly between species, as does the regulation of motility; therefore, developers must also confirm the translational applicability of their chosen species.^{51,52}

- Establishing surrogate biomarkers reflective of a contraceptive effect can accelerate both nonclinical and clinical product development. Biomarkers must be shown to correlate with significant contraceptive effect in vivo, through well-controlled natural mating studies or potentially through in vitro fertilization; a biomarker should display a clear dose-response relationship to support its validity. See <u>Biomarkers</u> for a complete discussion of the clinical applications.
- Recommendation: Species selection for IND-enabling toxicology studies should not default to standard models but rather be guided by the goal of maximizing clinical translatability. Species selection must be rigorously justified based on the intended clinical use, including the pharmacologic target, mechanism of action, route of administration, and pharmacokinetics.
 - The translatability of nonclinical findings to humans hinges on thoughtful species selection. The ICH M3 (R2) Guidance on Nonclinical Safety Studies for the Conduct of Clinical Trials and Marketing Authorization for Pharmaceuticals has been widely adopted by regulators, including the EMA and FDA.³¹ This guidance requires new chemical entities (NCEs) to be tested in two mammalian species, typically including one rodent and one non-rodent species. While rats and dogs are often perceived as the standard species for general toxicology, developers should not default to these models without careful consideration and justification. No regulatory guidance mandates a particular strain or species; alternative models (e.g., minipigs, rabbits, different rodent species) may be more suitable, depending on practical and scientific considerations.
 - Several publications describe the approaches and considerations employed in industry, with many developers prioritizing species based on homology, metabolite profile, and suitability of administration route.
 Many also base species selection on prior experience with chemical entities targeting the same pathway. For novel male contraceptives, there is sparse background knowledge or understanding of class effects to support decision-making, so it is even more critical to rationally and scientifically justify the selection of species.^{53,54}

• Developers of male contraceptive drugs should consider:

- O Pharmacological relevance: For NCEs, it is required that at least one animal species used for toxicity testing (whether rodent or non-rodent) be "pharmacologically relevant." This is defined by considering the target expression, distribution, and homology, as well as the relative potency of the molecule against that target and known unintended targets in both the selected animal species and in humans.
- Drug metabolism: Comparative *in vitro* metabolism data for a variety of animal species should be used to select the most metabolically relevant animal species for toxicity studies, ensuring similar exposure to metabolites expected in humans and increasing the likelihood of detecting meaningful adverse effects.
- Protein binding: Readily assessed *in vitro* in a range of animal plasmas, ensuring that protein binding is comparable or lower than in humans will help ensure that adequate intracellular drug exposure can occur.
- Route of administration: Some species are better suited than others for specific routes of administration, either due to the practical feasibility of repeat dosing, similarity to humans (e.g., minipigs for dermal administration), or the frequency of side effects that impact exposure (e.g., emesis in dogs).
- o Bioavailability: Developers should ensure that exposure in the animal model isn't limited by poor bioavailability via the planned route of administration.
- The use of efficacy models or species for toxicology should be carefully considered, as they are not always optimal for risk assessment. Importantly, alignment with the principles of the 3Rs (Replacement, Reduction, and Refinement) for animal use should be maintained by selecting species and study designs that reduce animal use while enhancing the predictive value of the data for human outcomes. In the spring of 2025, the FDA announced its Roadmap to Reducing Animal Testing in Preclinical Safety Studies, intended to reduce animal use in toxicity testing, primarily through the use of *in vitro* and *in silico* tools. Subsequently, the US National Institutes of Health (NIH) announced that it would no longer fund research performed solely in animals, aiming to advance progress on New Approach Methodologies and minimize animal

use.^{57,58} Globally, regulators are actively discouraging the use of nonhuman primates (NHPs) for toxicology studies unless there are genuinely no alternatives. For example, in the European Union, the use of NHPs is restricted to new drugs for debilitating or life-threatening diseases, and only when other species are demonstrably unsuitable for the study's purpose.⁵⁹

Recommendation: Reversibility should be demonstrated in at least one animal species prior to first-in-human studies, ideally through longitudinal monitoring of the relevant pharmacodynamic biomarker in semen following drug discontinuation or device removal. While mating studies may provide supportive data, pregnancy outcomes should not be required to demonstrate reversibility.

- Demonstrating reversibility of a contraceptive effect is a critical component of the preclinical evaluation of male contraceptives and should be established in at least one appropriately selected animal species. In many cases, reversibility can be adequately supported by the return of normal semen parameters—including sperm count and motility—following withdrawal of the investigational product. This approach reduces the variability and logistical challenges associated with mating studies, which are often poorly reproducible and confounded by species-specific behaviors.
- The chosen animal species should allow for repeat collection of ejaculates and be physiologically relevant to the mechanism of action of the investigational agent, enabling the demonstration of the contraceptive effect, followed by a return to fertility. For products inhibiting spermatogenesis or preventing sperm from being ejaculated, it is recommended that multiple samples be collected at pre-specified intervals during the suppression phase (to demonstrate a durable contraceptive effect), followed by additional samples collected after drug/device discontinuation to determine if sperm parameters have returned to normal ranges. Of note, these studies are considered primary pharmacodynamic studies and are not required to be performed under GLP conditions.
- The regulatory experience of committee members and others in the field suggests that reversibility based on semen analysis is generally acceptable when supported by precise, time-linked recovery data. Although mating

studies may be used as confirmatory or supplemental evidence, they are not expected to be required as the primary demonstration of reversibility.

Recommendation: Developers should clearly define expected and intended effects before initiating safety studies.

- The FDA provides comprehensive guidance on the evaluation of testicular toxicity, defined as "potential adverse effects on the testes," across multiple guidances, including "Testicular Toxicity: Evaluation During Drug Development Guidance for Industry." Typically, the decision to implement a plan to assess testicular toxicity clinically arises if there are histopathological findings in repeat-dose toxicology studies and/or rodent studies that demonstrate an impact on male fertility. In the case of male contraceptive products targeting spermatogenesis, both findings would be expected—indicative of efficacy, not an off-target effect. It is crucial that this information is communicated to contract labs performing the IND-enabling toxicology studies, so that these histological changes (representing on-target effects in the intended tissues) are not misclassified as toxicity, thereby avoiding confusion in safety databases and preventing reviewer misunderstandings.
- Committee members recommend that developers clearly articulate to regulators the distinction between expected histopathologic changes (e.g., vacuolization, decreased number of spermatids) and off-target toxicity, emphasizing that providing reversibility data is critical to substantiating this distinction.

Recommendation: Developers of male contraceptive drugs should prioritize fully characterizing the pharmacokinetics of their product early in development, including an assessment of drug concentrations in semen.

• Establishing a comprehensive understanding of the PK of a clinical candidate at an early stage provides essential data that informs multiple aspects of product development. Early PK characterization supports rational dose selection, helps predict therapeutic windows, and improves the design and interpretation of PD studies, including an understanding of the duration of action. It also allows for early identification of potential liabilities—such as low oral bioavailability, rapid clearance, or high interindividual variability—that are not in line with the target product profile.

Though regulators require non-clinical PK data to initiate clinical trials, this is typically limited to systemic exposure measured in plasma. Committee members have encountered concern from regulators over potential transmission of male contraceptive drugs through semen, resulting in exposure to the female partner and possibly impacting embryo/fetal development. Quantifying drug levels in semen provides a necessary foundation for assessing safety to secondary recipients, evaluating the potential for local pharmacologic effects, and designing appropriate nonclinical and clinical safety studies, if required. This quantification can be readily performed in the context of animal efficacy studies using a non-rodent model that allows for serial collection of ejaculates, with existing bioanalytical methodology adapted for the evaluation of drug concentrations in semen. By generating robust PK data—including concentrations in seminal fluid —developers will be better positioned to engage with regulators, support early modeling efforts, and ensure that their candidate advances through development with an evidence-based understanding of exposure and risk.

493 494

495

496

497

498

499500

501

502

503504

505

506

507

508

509

510511

512

513

514

515

516

517518

519

520

521

522523

524

525

526

527

528529

Recommendation: Developers of male contraceptives should consider conducting preliminary developmental and reproductive toxicity studies earlier than required by regulators and prior to entering the clinic.

- An extensive set of developmental and reproductive toxicity (DART) studies is required during drug development, but the timing of these studies often occurs after first-in-human trials and is mainly determined by regulators to ensure that the increasing risks to study participants at each stage of clinical development are supported by adequate nonclinical evidence. Given the significant cost and duration of these studies, regulators have recognized that it is often wasteful to perform them too early in development, with the ICH S5(R3) stating, "Since many clinical development programs are terminated prior to Phase 3, animal use can also be reduced by appropriately timing studies to support ongoing clinical development (e.g., embryo-fetal developmental toxicity data to support enrollment of women of childbearing potential) as per ICH M3."61
- Typically, assessment of DART involves three main *in vivo* study types: Fertility and Early Embryonic Development (FEED) studies, which assess adult male and female reproductive functions, gamete development,

mating behavior, and fertilization; the Embryo-Fetal Development (EFD) study, which aims to detect adverse effects on the pregnant female and on embryo- and feto-genesis; and the Pre- and Post-natal Developmental (PPND) study, which evaluates adverse effects following maternal exposure from implantation through weaning, monitoring the offspring's development up to sexual maturity. None of these components would be required before Phase I studies, given the male-only exposure and required use of another contraceptive method.

- For drugs designed to treat severe or life-threatening conditions, or where the risk of pregnancy can be severely minimized, an adverse finding during DART studies would not necessarily end clinical development. Conversely, in the field of male contraception, any DART findings beyond those that are intentional (i.e., suppressed fertility) would be expected to result in termination of development. Due to the nature of the product, typical risk management strategies are not applicable, and tolerance for biological developmental risk is essentially zero. Therefore, developers are encouraged to conduct preliminary DART studies to identify potential risks early and avoid initiating a costly clinical development program without sufficient confidence in an acceptable safety profile.
- For male contraceptives, which are only intended to be used by men, and should be discontinued once a pregnancy is recognized in a partner, two main concerns were discussed: possible drug exposure to women via semen and the risk of a small subset of sperm experiencing sublethal damage that could pose developmental risks if still capable of fertilization.
- Given the high cost of traditional DART studies, developers should consider initial screening utilizing alternative assays, designed to minimize cost and animal use, as described in Annex 2 of ICH S5 (R3).⁶¹ These assays employ models such as zebrafish or embryo culture to provide an early assessment of developmental and reproductive toxicity.^{62,63}

Drug Repurposing

Drug repurposing, also referred to as drug repositioning, is the process of identifying existing drugs or biologics that have already been clinically tested (and ideally approved) for one indication and re-testing them for a new indication. Often considered a compelling alternative to developing a new molecular entity, repurposing can leverage existing data, providing potentially shorter development timelines and considerable cost savings. The fields of oncology and neurology have found numerous successes in repurposing drugs originally developed for other indications, but sildenafil (Viagra) remains one of the most well-known success stories. Having failed in clinical development in 1993 as a treatment for angina, clinical development pivoted and sildenafil was approved for erectile dysfunction by both the EMA and the FDA in 1998.⁶⁴ In 2005, sildenafil citrate was approved for another indication, pulmonary arterial hypertension, using a different strength and dosing frequency under the brand name Revatio.⁶⁵

Recommendation: Developers considering repurposing of drugs for an indication in male contraception should utilize a rational and selective approach, focusing on compounds for which there is a strong mechanistic rationale for contraception or case reports of infertility. Low– and medium–throughput screening of drug repurposing libraries is unlikely to be effective in identifying a successful candidate, given the stringent criteria for efficacy and low tolerance for side effects over the anticipated long-term use of these products.

• Identifying an existing drug that can be utilized either on-demand or chronically for contraception is appealing, given the availability of the 505(b)(2) approval pathway at the FDA and the hybrid medicine application at the EMA.^{66,67} This ability to reference data generated by other sponsors can potentially result in shorter and less costly approvals. In addition, existing safety data on a drug may improve the likelihood of funding, whether through grants or investors. However, in comparison with therapeutic areas such as cancer, where the relative tolerance for off-target effects is greater, the likelihood of identifying a currently approved drug suitable for repurposing into a male contraceptive is much lower.

• One of the key challenges of drug repurposing is securing robust intellectual property (IP) protection. Because the active moiety has already been disclosed, composition-of-matter patents are usually unavailable.

Innovators therefore focus on formulation, method-of-use, dosing-regimen, or drug-delivery patents—especially when proprietary technologies or unexpected clinical findings create patentable distinctions. Most repurposed products are submitted to the FDA as 505(b)(2) new drug applications, which let sponsors rely on published literature or prior agency findings instead of duplicating all pre-clinical and clinical studies. A 505(b)(2) product that contains a previously approved active ingredient can obtain up to three years of regulatory exclusivity if new clinical studies essential to approval are provided. Conversely, if the application contains a New Chemical Entity (NCE), it remains eligible for the full five-year NCE exclusivity, even when filed under 505(b)(2). A recent example utilizing these strategies is Annovera—a contraceptive vaginal system that combines segesterone acetate (an NCE) with the previously approved molecule ethinyl estradiol. Approved in 2018 via the 505(b)(2) pathway, Annovera received five-year NCE exclusivity on the basis of segesterone acetate, while leveraging publicly available data for the estradiol component.68

596

597

598599

600

601

602

603

604

605

606

607

608 609

610

611

612

613614

615

616617

618

619

620

621

622

623624

625

626

627

628629

630

Developers using repurposed compounds should expect to perform numerous additional non-clinical studies. At a minimum, in vivo contraceptive efficacy and reversibility would need to be demonstrated. For drugs approved decades prior, often with a more limited dataset, developers may need to provide supplemental studies to meet current regulatory guidance. If the dose, route of administration, or planned duration of use differs from the original approval, additional non-clinical safety studies will be required, as described in the FDA Guidance, Nonclinical Safety Evaluation of Reformulated Drug Products and Products Intended for Administration by an Alternate Route. ⁶⁹ Additional reproductive and developmental toxicology studies may also be required, if the repurposed drug was originally approved for a population or indication otherwise expected to be incompatible with fertility and therefore was not as thoroughly tested for these types of toxicity. For example, as described in ICH Guideline S5(R3), drugs originally approved for late-life-onset diseases or a presumptively infertile population typically may have evaluations waived due to minimal risk.⁶¹ Clearly, these requirements are at the forefront when considering repurposing for contraceptive use in a younger, fertile population.

- Despite the clear challenges of repurposing existing drugs for male 631 632 contraception, there were several areas of interest discussed by the committee. One approach may be the repurposing of acute medications into 633 low-dose, chronically administered male contraceptives. It is plausible that 634 there are approved agents that could impact spermatogenesis if dosed daily, 635 without the effect being observed with periodic use. The reverse, utilizing a 636 637 higher on-demand dose of an approved chronic drug, is unlikely to be successful; avoiding toxicity would likely require a cap to the frequency of 638 639 use, limiting utility.
- 640 Finally, a similar approach would be to utilize molecules that have failed during preclinical or clinical development, especially those that were 641 discarded due to reversible fertility-related toxicity. Although these 642 molecules would be expected to proceed via a more typical regulatory 643 approval pathway, any available data could aid developers – either directly 644 645 or by using the molecule for lead optimization. For example, the ReFRAME library, which stands for "Repurposing, Focused Rescue and Accelerated 646 Medchem," contains approximately 12,000 molecules, including approved 647 drugs, but also those that failed during clinical development.⁷⁰ This library 648 has already been utilized in high-throughput screens searching for 649 molecules that impair key sperm physiology parameters such as sperm 650 651 motility and acrosomal exocytosis^{71–73} and inhibit potential male contraceptive target proteins on sperm.⁷⁴ However, investigators are 652 cautioned to carefully examine all hits arising from these screens to evaluate 653 whether the selectivity, toxicity, and off-target effect profiles are compatible 654 with a contraceptive indication, 75 especially when contraceptive use would 655 require a change in delivery route or dosing, such as repurposing a molecule 656 657 approved for occasional or topical use for chronic oral delivery. Further, 658 developers should be aware that some hits from high-throughput screens may be pan-assay interfering compounds (PAINS) that provide false 659 positives by reacting with components of standard assays rather than the 660 intended target.⁷⁶ Molecules such as these are rarely amenable to 661 development as pharmaceutical leads, so to avoid wasting time and 662 resources, all screening hits should be reviewed critically by experienced 663 medicinal chemists and confirmed using orthogonal experiments.⁷⁷ 664

• Commercial realities may also steer decision-making in drug repurposing. If an existing drug is found to act as a contraceptive as-is, its pricing would likely be dependent on the existing—often generic—product. Developers may wish to introduce a revised dose, regimen, formulation, or delivery system. Though this modification will necessitate additional pharmacokinetic and safety work, it still builds on the original dataset, reducing developmental uncertainty while enabling the product to be reviewed as a distinct submission. In turn, it can be priced independently of the legacy product.

On-Demand Contraceptive Drug Development

"On-demand" contraceptive drugs—designed to be used on an as-needed basis minutes or hours before sexual intercourse and be effective for a limited period of time—would represent an entirely new class of contraception; while many barrier devices and vaginally-administered spermicides can be used immediately before intercourse, and emergency contraception is approved for use after unprotected intercourse, there is currently no systemically-delivered pharmaceutical contraceptive available for males or females that is designed to be taken before each sexual encounter. To date, research into on-demand male contraceptives has centered around two general mechanisms of action:

1) inhibition of one or more necessary functions of mature spermatozoa, such as sperm motility, hyperactivation, capacitation, or sperm-egg fusion, and 2) inhibition of sperm release during ejaculation.

Globally, men consistently rank time to onset of efficacy as one of the most important attributes driving their theoretical acceptance of a new male contraceptive, 28 so on-demand contraceptives might be embraced by a segment of users that are less interested in chronic or long-acting contraceptives. Other potential benefits of on-demand contraceptives are a reduction in the user's overall exposure to the active pharmaceutical ingredient (API) and the potential for the female partner to personally verify that the male user successfully took the contraceptive before intercourse. Further, it is possible that an API developed to impair sperm function within the male shortly before intercourse could separately be repurposed for vaginal or systemic delivery in the female before or immediately after intercourse, to impair the same sperm function upon arrival of the ejaculate in the female reproductive tract.

The potential benefits of this contraceptive modality are accompanied by unique challenges in its drug development process, which will need to be overcome for these products to reach regulatory approval. Further, because regulators currently have limited experience evaluating on-demand contraceptive drugs, in regulatory proceedings developers will need to be prepared to act as the experts on this novel modality, and suggest reasonable assays for the evaluation of these drugs and reasonable metrics by which to judge the results.

Recommendation: "On-demand" male contraceptives must require only one dose for full effectiveness, should offer effective pregnancy prevention within 1 hour or less after dosing, and should remain effective for at least several hours after dosing. The duration of action on the product label must be based on well-defined criteria and thoroughly investigated clinical data.

• Given that on-demand male contraception would be a first-in-class product, there are no real-world user data to define an ideal Target Product Profile. Preliminary end-user engagement by committee members suggests that both men and women prioritize the shortest feasible onset of action (unpublished); however, longer onset times (e.g., several hours) may be acceptable when paired with a substantially longer window of efficacy. The efficacy windows studied during human pregnancy-prevention trials should be chosen conservatively based on the observed PK/PD relationships seen in preclinical and early clinical studies, to reduce the incidence of users experiencing breakthrough pregnancies as a result of sex at the edges of the product's time window of efficacy, and the final product packaging must list an identical efficacy window that that which was studied in the pregnancy-prevention trials.

Recommendation: On-demand male contraceptives that block mature sperm functions but do not inhibit the release of sperm during ejaculation will be subject to dilution and potential washout of the API by the fluids in the female reproductive tract. To ensure that sperm do not regain fertilization competence after this dilution, developers of these drugs must consider API-target kinetics (e.g., K_{on} and K_{off}) and the duration of pharmacodynamic effects to create drugs that cause irreversible or extremely long-lasting inhibition of sperm function.

Fertilization in humans has been recorded up to five days after the most recent episode of intercourse,⁷⁸ and inert spheres the size of sperm have been shown to traverse the cervix and enter the uterus during some phases of the menstrual cycle due to peristaltic fluid movement in the female reproductive tract.^{79–81} Together, these data suggest that temporary inhibition of sperm parameters like motility may not be sufficient for successful contraception in vivo, because if the contraceptive API is only present in the semen, any sperm that traverse the cervix could survive for several days in the female reproductive tract, where uterine or fallopian fluid could dilute and/or wash out any API, allowing sperm to regain their fertilization capacity. To avoid this possibility, APIs used for on-demand male contraception must either remain durably bound to their targets in a dilutive fluid environment or utilize a mechanism of action in which temporary contact with the API causes irreversible loss of the sperm cells' fertilization capacity. Newer paradigms in drug design such as targeted degraders and covalent inhibitors could offer sufficiently durable inhibition 750751752

753

754

755

756

Recommendation: For on-demand contraceptives that inhibit mature sperm function (e.g., motility, acrosome reaction), developers should be cognizant of the points of contact between sperm and the API – i.e. which male reproductive fluids contain the API and whether those fluids contact sperm before or during ejaculation. This information will impact drug design and preclinical/clinical experimental design.

757758759

760761

762

763

764

765

766

767768

769

770

771

772773

774

775

776

API distribution into various compartments of the male reproductive tract will dictate the extent of exposure to the sperm. APIs that distribute into the epididymis will have an extended opportunity to bind to their protein targets on sperm and inhibit sperm function, starting from as soon after administration as the API distributes to the epididymal fluid until the time of ejaculation. In contrast, APIs that do not enter the epididymal lumen but are present in fluids from the prostate, seminal vesicles, or other male reproductive glands will mix with sperm only at the moment of ejaculation, leaving very little time for the API to interact with its binding partner on sperm and inhibit sperm function, because within seconds or minutes of human ejaculation, sperm begin to leave the seminal pool in the vagina and swim into the cervical canal, where they are no longer in contact with the seminal plasma. 84,85 In such cases, standard semen analysis, which involves waiting up to one hour for semen liquefaction,86 could overestimate the effect of the API on sperm function by extending the sperm's time of contact with seminal plasma beyond what occurs in vivo. The pharmacokinetic distribution of APIs can be measured in various reproductive fluids in preclinical model species⁸⁷ and can potentially be estimated in humans using split ejaculate collection.88,89

777 778 779

NOTE: Several topics relating to on-demand contraceptive development are discussed in other sections of this document:

781 782

780

 Necessary semen sample frequency for on-demand products in clinical trials is discussed in the Clinical Sperm Parameters section.

783 784 • The necessity of pharmacokinetic and toxicity studies to investigate the effect of frequently repeated dosing is also discussed in the <u>Clinical Sperm Parameters</u> section.

785 786 787

• A recommendation relating to pharmacodynamic biomarkers for ondemand contraceptives is included within the <u>Biomarkers</u> section. • A discussion of statistical measurements for efficacy that may be applicable to on-demand products is included in the <u>Evaluation of Clinical Efficacy</u> section.

Biomarkers

792793794

795

796 797

798 799

800

801

802

803

804

805

806

807

808

809

810

811812

813814

815816

817

818

819

820

821

822

823

824

825

826

827

828

The use of biomarkers has become commonplace in both medical research and clinical practice. Biomarkers are frequently used as diagnostic tools (e.g., hemoglobin A1c for Type 2 diabetes), to assess risk or susceptibility (e.g., BRCA1/2 for breast cancer), or to monitor drug safety (e.g., liver function tests). In addition, pharmacodynamic, or response, biomarkers are frequently employed at various stages of drug development and as surrogate endpoints in clinical trials. Biomarkers also have the potential to greatly benefit the development of novel male contraceptives. The U.S. Food and Drug Administration (FDA) defines a biomarker as "a measurable indicator of normal biological processes, pathogenic processes, or responses to an exposure or intervention, including therapeutic intervention." Within the context of these recommendations, we will focus on pharmacodynamic (PD) biomarkers—those that measure the response to an intervention—and their eventual use as surrogate endpoints, able to replace a direct measure of clinical benefit in a trial. This type of biomarker is a critical tool in understanding the pharmacodynamic effect of a new investigational agent and can be leveraged to support efficacy claims, enable dose selection, and monitor reversibility.

The most widely used pharmacodynamic biomarker in male contraceptive research is sperm count. It serves as a surrogate endpoint for pregnancy prevention in both nonclinical studies and early-phase clinical trials and is the established clinical measure for assessing the efficacy of vasectomy. Despite broad utility and acceptance, no contraception-specific biomarkers—male or female—have yet been formally qualified through the FDA's Biomarker Qualification Program (BQP), nor utilized as a surrogate endpoint for drug approval. 92,93 Individual developers who wish to use a potential biomarker in clinical trials must therefore propose and justify to regulators the choice of biomarker (and the suitability of its assay). Biomarker qualification through the BQP-arigorous, multi-year process typically pursued by a consortium—is not required for clinical trial use. However, without qualification, regulatory acceptance of a proposed biomarker (and associated assay) is IND-specific and does not extend beyond that submission. 94,95 The FDA provides a detailed list of considerations for developers who intend to use a biomarker as a new surrogate endpoint that has not been previously used as the primary basis for product approval. 96 Formal qualification of one or more response biomarkers for male contraception could be highly valuable to the field. Once qualified, either as a pharmacodynamic biomarker to directly assess drug effect, or as a surrogate endpoint for contraceptive efficacy, that biomarker can be used across multiple development programs by any developer, thereby lowering development barriers for new product developers and improving consistency in regulatory expectations.

Despite the lack of qualified biomarkers to this point, well-justified pharmacodynamic biomarkers already support decision-making throughout the development of male contraceptives—from early efficacy assessments in Phase 1/2 studies, to dose optimization and evaluation of time to effect onset—and are critical to assessing suppression of fertility before initiating pregnancy-based trials. Biomarkers are also a vital tool for evaluating the reversibility of contraceptive methods in humans. Natural pregnancies following a trial can offer definitive evidence of recovery, but requiring couples to conceive for the sake of data collection is ethically unacceptable, necessitating the use of a biomarker to assess a return to normal fertility.

Although sperm-based biomarkers have attracted growing interest as surrogate endpoints for pregnancy prevention, only post-vasectomy azoospermia has achieved universal acceptance. While sperm count—particularly severe oligozoospermia and azoospermia—is employed as a pharmacodynamic biomarker to support clinical development, its acceptance as a standalone surrogate for contraceptive efficacy remains limited. Continued data collection, assay standardization, and regulatory engagement are essential to advance sperm count toward potential formal qualification under frameworks such as the FDA's Biomarker Qualification Program.

In parallel, there is a critical need to identify, validate, and standardize additional biomarkers tailored to products that operate through novel mechanisms beyond the inhibition of spermatogenesis or obstruction of the male reproductive tract. These efforts should include the development of reliable and robust assays, as well as clinical evidence that biomarker changes are predictive of contraceptive efficacy. Emerging evidence suggests that composite biomarkers—such as metrics incorporating multiple sperm parameters (e.g., total progressive motile sperm count, of calculated by multiplying semen volume, sperm concentration, and the percentage of progressively motile sperm)—may offer enhanced power to predict contraceptive effect. These multidimensional readouts may prove superior to single metrics, such as sperm concentration, particularly for products targeting sperm function rather than sperm production or transmission of sperm. Per more discussion of these sperm parameters, see the Clinical Sperm Parameters section.

Qualifying the established pharmacodynamic biomarker of azoospermia as a surrogate endpoint for pregnancy prevention, as well as validation of new pharmacodynamic biomarkers for novel targets, could represent a paradigm shift in male contraceptive development, facilitating earlier, more efficient demonstration of efficacy in male-only studies and reducing dependence on large, complex pregnancy trials in partnered couples.

Recommendation: Developers of products that impact sperm function, rather than spermatogenesis or sperm transmission, must identify reliable, biologically relevant biomarkers and establish reproducible laboratory assays to measure them. For a first-in-class product (based on a novel mechanism of action or drug target), this biomarker should also be measurable in relevant animal models, so that its correlation with pregnancy prevention can be demonstrated prior to clinical use.

872873874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

866867

868

869870

871

• Developers of male contraceptive products that impact sperm function have greater challenges in biomarker development than developers of products that lead to azoospermia or severe oligospermia. The latter can rely upon the World Health Organization's Laboratory Manual for the Processing and Examination of Sperm, which details well-established procedures for counting sperm and is used worldwide.86 Developers of products that impact sperm function will have to develop, validate, and standardize new methods applicable to their mechanism of action. The multi-step process of developing and validating one or more biomarkers and their associated assays is challenging, but the male contraceptive field benefits significantly from the non-invasive nature of semen sample collection and analysis. In contrast, many efficacy biomarkers in other therapeutic areas are measured in blood or even tissue, requiring invasive procedures such as repeated venipuncture or biopsies, which add discomfort, risk, and logistical complexity, and may limit patient acceptability. For male contraceptive products targeting sperm function, it is expected that a direct biomarker (measuring the effect of the drug on the target) can be measured. In addition, a downstream or indirect biomarker (such as sperm motility) may also be readily measurable. For example, the activity of a drug targeting soluble adenylyl cyclase (sAC) could be measured in semen both directly (by monitoring the reduction of the intracellular concentrations of cAMP within spermatozoa) and indirectly (by monitoring sperm motility).

896897898

899

900

901

902903

904

• After identifying a potential pharmacodynamic sperm biomarker indicative of measuring direct or indirect activity of the target, developers of novel male contraceptives will have to develop and validate an assay capable of generating accurate, precise, and reproducible data to measure the biomarker. The extent of assay validation should follow a fit-for-purpose approach, suitable for the intended use of the data. Once the biomarker assay is validated for a species, developers should plan to

demonstrate a dose-response relationship between exposure and change in the biomarker. Subsequently, validation of the biomarker itself, by comparing pregnancy rates in the same species with the biomarker measurements, will ensure that it correlates well with the contraceptive effect. Developers may want to validate both a direct and an indirect biomarker. A direct biomarker may be more useful in preclinical development, aiding in the establishment of a PK-PD relationship (as well as comparing potential lead compounds). A direct biomarker may also be more sensitive than an indirect biomarker, potentially allowing for the detection of a pharmacologic effect even at the low initial doses typically administered in first-in-human studies. However, the indirect biomarker may be more clinically applicable in later trials, since there might be an existing knowledge base (for example, published data on the typical motility observed across a population) and greater acceptance of its correlation with fertility.

In a Phase 2a clinical trial of a male contraceptive product, the use of a response biomarker is critical to inform PK/PD relationships for dose selection. The biomarker (and its assay) must be high quality and properly implemented to ensure that the resulting data can justify and inform the design of subsequent couple-based trials evaluating pregnancy prevention. The onus will be on the developer to convince regulators that the chosen biomarker is sufficiently sensitive to detect differences in response at various dose levels, is suitable for clinical use, is expected to correlate with contraceptive efficacy, and can be measured reliably and accurately. Preclinical validation of a new biomarker, as described above, is typically required to establish a correlation between changes in the biomarker and fertility outcomes, thereby supporting its use clinically. It should be noted, however, that numerical thresholds of efficacy (e.g., the percentage of sperm affected by a functional change that correlates to contraceptive effect) may not translate directly from animals to humans, given the significant variation in reproductive biology, including sperm parameters, across species and even strains of animals.

• For on-demand contraceptives that impact sperm function such as capacitation, acrosome reaction, or sperm-egg fusion, the identification and validation of a well-defined biomarker that can be measured accurately, precisely, and reproducibly will be critical. In comparison with agents designed to suppress spermatogenesis and administered daily for

prolonged periods, on-demand agents are expected to display markedly more transient effects. Consequently, PD biomarker assays for these types of products will likely require greater assay performance to adequately define the product's time to onset and the duration of sufficient contraceptive activity. For example, in trials of a product that suppresses spermatogenesis (e.g., male hormonal methods), there may be no meaningful difference in outcome between sperm concentrations of 100,000 and 200,000 per milliliter, since both are well below the established threshold associated with male contraceptive efficacy. In contrast, assays of functional changes in sperm may need to detect significantly smaller shifts in the pharmacodynamic biomarker. For example, following administration of a sAC inhibitor to mice, an average of 1-2% of sperm were motile at timepoints up to 2.5 hours, with approximately 10% of sperm motile after six hours. 101 This example underscores the importance of highly sensitive, accurate, and precise assays to determine whether the subject (or animal) is within or beyond the window of contraceptive efficacy for on-demand products.

 Recommendation: Pregnancy should not be the only endpoint evaluated in Phase 3 / pivotal trials of male contraceptives. For products that suppress sperm production or prevent sperm emission, a male-only cohort should be included, utilizing sperm count as the efficacy endpoint.

- The committee extensively discussed the limitations of relying solely on pregnancy prevention as the primary endpoint in pivotal trials for male contraceptives. While pregnancy remains the regulatory gold standard for establishing contraceptive efficacy of female methods, members emphasized the scientific, ethical, and logistical benefits of focusing on direct measures of biological activity—particularly sperm count.
- Within this context, the committee agreed that currently, azoospermia is the only sperm-based endpoint with enough mechanistic plausibility and precedent to be considered a surrogate marker for contraceptive effect. It is also accepted as the endpoint for vasectomy efficacy. Similarly, severely suppressed sperm concentrations (<1 million/mL) have been associated with very low pregnancy rates in hormonal male contraceptive trials. For other sperm biomarkers, additional clinical data are needed before an assessment of the threshold required for contraceptive efficacy can be made.

• The inclusion of male-only cohorts in pivotal trials—particularly for products that suppress sperm production or block sperm transmission—was broadly supported by the committee as a scientifically valid and strategically advantageous approach. While efficacy data from such cohorts may not yet support a full contraceptive indication and will potentially introduce study design and statistical challenges, male-only studies or arms provide several critical benefits, both for the product under development, as well as long-term male contraceptive development. These benefits include:

- <u>Direct pharmacodynamic assessment:</u> Male-only cohorts allow for precise evaluation of sperm suppression (e.g., onset, consistency, duration of suppression) aligned with the product's mechanism of action.
- Expanded safety data in a more diverse population: Studying uncoupled men enables developers to collect safety and tolerability data in a broader population that more accurately reflects a substantial portion of likely end users. It also allows for evaluation of whether real-world adherence or usage patterns vary with relationship status, given the autonomy in contraceptive decision-making.
- Ethical and practical feasibility: Male-only cohorts reduce or eliminate pregnancy risk, decrease the burden on females, and may be a more judicious option when enrolling participants in jurisdictions lacking abortion access. In addition, male-only cohorts provide data and experience that can be applied to required studies in adolescent males.
- Operational efficiency: Male-only studies and male-only arms of larger trials can likely be enrolled more rapidly and performed at lower cost than traditional trials with pregnancy as the only endpoint, an important consideration for resource-limited developers. In contrast with study arms that only include men, pregnancy-based trials require prolonged participation of both partners, a willingness to rely only on the experimental product and risk pregnancy, and the need for the participants to remain coupled for the duration of the trial.

By generating robust safety and pharmacodynamic data in broad male populations, male-only cohorts can contribute greatly to the long-term data, including the likelihood of suppression and frequency of sperm rebound in studies of agents that suppress spermatogenesis.

102310241025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1022

The use of a sperm-based biomarker such as azoospermia as a primary efficacy endpoint in Phase 3, or even Phase 2b, represents an aspirational shift in how male contraceptive efficacy may be assessed—moving from indirect outcomes (pregnancy in a partner) to direct biological effect in the male user. This paradigm could streamline development, improve ethical alignment, and create a clearer scientific bridge between mechanism and outcome. However, committee members widely agreed that the current depth and breadth of clinical data and level of regulatory and public acceptance are not yet sufficient to fully support this shift. While sperm count is accepted and utilized as a pharmacodynamic biomarker to assess vasectomy success, its use as a surrogate efficacy endpoint in regulatory submissions will require a concerted, multi-product, data-rich effort likely spanning many years and significant investment. Importantly, any departure from the traditional pregnancy-based efficacy standard will require educating prescribers and end users on the rationale and validity of azoospermia as a predictor of pregnancy prevention to ensure understanding of the mechanism and trust in the product. As an illustrative example from another therapeutic area, statin drugs are approved based on a surrogate endpoint (LDL-cholesterol reduction), rather than direct clinical benefit (i.e., improvement in cardiovascular outcomes).90 Now one of the most widely prescribed drug classes, with 92 million people in the US reportedly using a statin in 2019, public acceptance arose not only from prescriber guidance, but also from a dramatic increase in common knowledge of cholesterol through direct-toconsumer advertising, health campaigns, and media interest.¹⁰⁴ Until a surrogate endpoint is validated for male contraceptives and public awareness of azoospermia as a contraceptive mechanism increases, the strategic use of male-only cohorts in pivotal trials offers a feasible and scientifically sound pathway to advance the field—enabling rigorous data collection to support ongoing and future development, while minimizing the risk of unintended pregnancy.

1055 1056 1057

1058

1059

1060

• The unconventional concept of male contraceptives seeking a label indication for azoospermia rather than contraceptive effect was also discussed by the committee. This approach would eliminate the need to formally establish azoospermia as a surrogate endpoint. This approach

1061	might be most applicable to vas occlusive devices, given the current use of
1062	azoospermia to classify a vasectomy as successful. However, this approach
1063	would mark a profound departure from established regulatory precedent
1064	and would almost certainly require a dramatic shift in how consumers
1065	think about and choose contraception.
1066	

Global Considerations

In the current global landscape, contraceptive product developers have many options when deciding where to initiate clinical trials. To choose clinical sites, decision makers must consider and balance factors including cost, timeline, data acceptability by regulatory agencies in markets of interest, participant diversity, experience and capabilities of the on-site trial team, logistics of delivery of test articles and necessary equipment, local legal and political landscape, structures of participant payment plans, etc. Because of these multifactorial considerations, different clinical locations may be appropriate for different development programs, or even for the same development program at different stages of development. In the recent history of male contraceptive development, clinical trials have been held in many different countries, including various US states, Australia, Chile, China, the European Union, India, Indonesia, Kenya, the United Kingdom, and Zimbabwe. 105-110

 Currently, several American companies that are developing male contraceptives and planning to seek regulatory approval in the US and EU have chosen to conduct early studies in countries outside of these regions. In part, this highlights the role that governmental policies have in making particular locations more or less appealing for contraceptive clinical trials.

Recommendation: Jurisdictions may be made more attractive to contraceptive developers by shortening review timelines, streamlining and simplifying data submission formats, and offering R&D tax credits.

• The decision of where to conduct a clinical trial is frequently driven by the sponsor's business concerns, particularly costs and timelines. As examples of attractive policies, members of the working committee cited Australia's Research & Development tax incentive¹¹¹ and the reduced timeline for first-in-human study approval from the Australian Therapeutic Goods Administration (TGA). As examples of dissuasive policies and systems, committee members cited the time necessary to convert preclinical datasets into the US Food and Drug Administration's required 'Standard for Exchange of Nonclinical Data (SEND)' format. However, this should not preclude developers from engaging with the US FDA, even if they do not

plan to initiate an early clinical trial in the United States. Notably, the FDA offers scientific advice meetings at no cost—unlike in Europe, where fees for similar meetings can exceed €50,000.¹¹² If the goal of the sponsor is to ultimately enter the US market, these FDA pre-submission meetings can be helpful to ensure that data from trials performed outside of the US will be acceptable by the FDA as future justification for a later-stage clinical trial in the US.

1108 1109 1110

1111

1102

1103

1104

1105

1106

1107

Recommendation: Male contraceptive efficacy trials that utilize pregnancy as an endpoint should prioritize clinical sites in states or countries with stable legal access to first-trimester abortion care.

1112 1113 1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

11251126

1127

1128

1129

11301131

1132

1133

1134

11351136

Any experimental male contraceptive carries an unknown level of risk of breakthrough pregnancy, whether through method failure or poor user compliance. Early phase clinical trials that only enroll males and do not track pregnancy generally require participants to use a backup method of contraception, but in later stages of development, where the trial contraceptive is being used as the only form of pregnancy prevention, it is critical that the study organizers develop and implement a well-formed plan that prioritizes the female participants' care in the case of a pregnancy. Any study participant who becomes pregnant while on study should have easy and immediate access to safe pregnancy termination, should they choose it, both because of the imperative to provide complete care for all study-related events, and because assurance of the availability of pregnancy termination in the case of pregnancy is likely to significantly increase successful participant recruitment rates. Consistent access to safe pregnancy termination may be made difficult by the changing legality of abortion care in different jurisdictions, and so states or countries in which legal challenges to first-trimester abortion are ongoing should be considered with caution, to avoid a situation where early-stage pregnancy termination becomes illegal in that jurisdiction midway through a study. If it is not possible to avoid jurisdictions lacking stable early-stage abortion protections, developers may wish to delay performing clinical trials in regions with limited abortion access until later stage trials when a better estimate of pregnancy risk is known and can be adequately communicated to potential participants.

11381139

1140

1137

• Currently, many US federal government funding appropriations carry a restriction stating that they cannot be used to pay for pregnancy

termination except in rare circumstances.^{113,114} Developers utilizing any US federal funding should seek legal counsel if they wish to cover pregnancy termination on-study using non-governmental funds, and all developers should carefully develop and implement study protocols to ensure complete care for study subjects in the case of breakthrough pregnancies while remaining compliant with local regulations at all clinical sites.

Recommendation: Participant compensation structures should be carefully considered to ensure equitable compensation within a local context, prevent financial coercion, and maximize patient compliance. Participant compensation structures without a significant up-front payment should be used wherever possible.

• In recent contraceptive efficacy trials, considerable compensation at study intake or before entry into the efficacy period has sometimes led to unusually high rates of participant withdrawal prior to the start of drug administration, which can artificially inflate participant discontinuation rates. Study sites should be prioritized if they allow for minimal reimbursements early on, with more significant payments mid-study and beyond.

• Developers have relied upon local experts to help navigate delicate decisions around participant compensation rates and structures. It is important to tailor compensation structures to local economic standards and levels of risk and effort incurred by participants at each step of the process, so the study is sufficiently attractive to potential participants and enables their participation by covering needs like transportation costs or childcare but does not encourage participants to overlook potential risks or remain on study when they would otherwise wish to withdraw.

Recommendation: Developers should utilize study sites that have clinicians and support staff who are experienced in both the practice of reproductive health and participant intake/evaluation for clinical trials, to help ensure genuine participant interest in the study.

 Clinical trials for male contraceptive drugs and devices outside of the US have been performed in collaboration with local physicians and contract research organizations (CROs) that specialize in clinical research.
 Committee members stressed the importance of utilizing a local team that

1180	is experienced at screening and consenting subjects thoroughly, carefully
1181	following study protocols, and recording data while delivering excellent
1182	patient care. For example, urologists who routinely perform vasectomies
1183	and have experience with consenting patients and managing and
1184	documenting adverse effects in clinical trials may be ideally suited for vas-
1185	occlusive device development programs.

Study Participants

Explicit guidance on inclusion and exclusion criteria for study participants is limited. The principal reference for regulators and clinicians remains the widely adopted ICH E8(R1), General Considerations for Clinical Studies. 115 Updated most recently in 2021, the overall objective of this document is to protect the rights, safety, and well-being of study participants. However, little specific guidance is offered with respect to participant selection. The document states, "The population to be studied should be chosen to support the study objectives and is defined through the inclusion and exclusion criteria for the study. The degree to which a study succeeds in enrolling the desired population will impact the ability of the study to meet its objectives. The study population may be narrowly defined to reduce the risk to study participants or to maximize the sensitivity of the study for detecting a certain effect. Conversely, it may be broadly defined to more closely represent the diverse populations for which the drug is intended."

In the context of female contraceptive methods, <u>FDA guidance</u>¹¹⁶ offers the following directive on participant age: "The primary efficacy results should be calculated using the trial population of women younger than or equal to 35 years old at study enrollment because the likelihood of pregnancy decreases with advancing age. Include additional efficacy analyses for the overall trial population and a subgroup analysis for those older than 35 years old." Regarding the age of the participants for safety evaluations of these trials, the document states, "The safety evaluation should include data from all enrolled subjects (from all participating countries), including those older than and younger than 35 years old."

Conversely, the <u>EMA guidance</u>¹¹⁷ for female hormonal contraceptive methods merely provides participant factors to consider, stating "The demography of the group of women included in studies should be carefully described, especially regarding factors thought to be relevant for the overall contraceptive efficacy of the method (e.g. weight, height, BMI, age, education, sexual relation/activity, parity, smoking, alcohol use, menstrual related symptoms, concomitant use of condoms to protect from sexually transmissible disease etc.). Where heterogeneity of fertility is likely (e.g. a study group containing a subgroup of breastfeeding mothers or older women), separate estimates or specific studies of the Pearl Index should be presented for important subgroups."

In addition to the adult population, developers in the US are legally required to clinically evaluate most new drugs in pediatric populations to comply with the Pediatric Research Equity Act (PREA). Two FDA guidances are available to aid developers in this effort, specifically Pediatric Drug Development: Regulatory Considerations — Complying With the Pediatric Research Equity Act and Qualifying for Pediatric Exclusivity Under the Best Pharmaceuticals for Children Act¹¹⁸ and Pediatric Drug Development Under the Pediatric Research Equity Act and the Best Pharmaceuticals for Children Act: Scientific Considerations. 119 Though the PREA mandates that New Drug Applications include a pediatric assessment, mechanisms for waivers or delays exist. Specifically, "FDA recognizes that in certain cases, scientific and ethical considerations dictate that pediatric studies should not begin until after adequate safety and efficacy data are available in adult subjects; for example, where a drug has not shown any advantage over other approved drugs in the class, the therapeutic gain is likely to be low, and the risks of exposing pediatric subjects to the new drug may not be justified until the drug's safety profile is better established in adult subjects. In these cases, the applicant can request a deferral of required pediatric studies (see section III. A., PREA)."119 The EMA has a comparable option to petition for a <u>Pediatric Investigation Plan deferral</u>. 120

Recommendation: Clinical trial sites should be chosen to ensure ethnic and racial diversity of the study population. Furthermore, to ensure study participants are representative of future users, studies should include males not in committed relationships, as well as those in long-term monogamous relationships.

• Though regulators encourage, or even require, clinical study populations to be racially and ethnically diverse, developers should ensure that the study population represents the demography of future users (i.e. a mix of coupled and single men) and prioritize countries with greater interest in male contraceptives. Practically, the enrollment of un-partnered males in efficacy studies will require the establishment of a male-only endpoint (such as sperm concentration, or total motile sperm count; *See Biomarkers section*), so that men's participation is not limited to the evaluation of safety.

Recommendation: Clinical trials of male contraceptives should enroll a broad age range of adult males. Proven fertility should not be required, but participants should have sequential normal semen analyses demonstrating adequate motility, morphology, and count as described in the most current edition of the World Health Organization Laboratory Manual for the Examination and Processing of Human Semen.⁸⁶

• Recent trials of male contraceptives have utilized an upper age limit for men ranging from 50-65. 106,121 Though less striking of a decline than female fertility, a decrease in male fertility also appears to occur with age, with the likelihood of couples with a male partner 35 or older conceiving in one year half that of men under 25. 122 Increasing paternal age is also associated with higher miscarriage, stillbirth and birth defect rates. Though minimal correlation between age and sperm count has been observed, semen quality, especially motility, has been shown to decline with age. 123,124 If enrollment age skews towards older men, there is concern that efficacy would not adequately represent a younger population with greater fertility. 122 However, the committee was unified that male contraceptive trials should (1) utilize a representative group of intended users, and (2) perform multiple semen analyses during screening so the study population can be selected via adequate baseline sperm parameters, rather than the more arbitrary age brackets.

• To account for intraindividual variation in ejaculate volume and quality, eligibility should be based on at least two -optimally three- samples, with each collection preceded by 2-7 days of abstinence (i.e., serial samples should be collected <u>at least</u> 48 hours apart).

Recommendation: First-in-human studies of new molecular entities for male contraception should be performed in men who do not desire to father children in the future, in case of unexpected adverse effects on fertility or lack of reversibility. Additionally, developers may want to consider offering the cryopreservation of a semen sample for the duration of the trial at no cost to the study participants.

• Though comprehensive animal studies will have demonstrated reversibility prior to a new agent being used in humans, enrolling men who do not intend to father children in the future is a simple and rational de-risking strategy. The potential of using vasectomized men for Phase 1 was

discussed at length by the committee, but is suboptimal for methods that target extra-testicular sperm function, since it precludes evaluation of ejaculates for early pharmacodynamic evaluation. Most importantly, limiting study participation to vasectomized men will narrow the pool of potential participants too severely and exclude willing participants such as gay men who do not intend to father children but may not seek a vasectomy due to lack of pregnancy risk.

• However, for some studies, an alternative approach has been used, with the intentional recruitment of men already planning for a vasectomy. This strategy was used in previous studies of drug combinations, with the collection of post-treatment testicular biopsies at the time of vasectomy. 125,126 A current trial of a vas-occlusive device also provides a vasectomy to the user, allowing for tissue collection and analysis. 121

• Short-term safety studies should not expect, nor require, male participants to be partnered. However, all study participants would be expected to utilize backup contraception if engaging in intercourse with a partner atrisk for pregnancy.

Recommendation: Developers should carefully consider the acceptable minimum sperm parameters for enrollment, with consideration for the stage of development and the mechanism of action of their drug or device.

• Significant discussion occurred within the committee regarding what should constitute "normal" or sufficient sperm/semen parameters for enrollment. The WHO Laboratory Manual for the Examination and Processing of Human Semen (6th ed.) lists lower reference (5th-centile) values of 39 million total sperm per ejaculate, 16 million sperm per mL, 42 % total motility (32 % progressive), and 4 % normal morphology in men whose partners conceived within 12 months of unprotected intercourse. Section A recent study of a hormonal male contraceptive combination gel (NES/T) employed an enrollment criterion of 15 million (M) sperm/mL (based on two analyses), additionally requiring that at least one of these samples was "... without gross abnormalities of sperm motility and morphology." Developers will need to consider, based upon their own product's mechanism of action, whether meeting the reference value for a single parameter is sufficient or multiple parameters should be required for enrollment. For example, for products targeting azoospermia, the total

number of sperm per ejaculate might be a superior indicator of testicular function, as opposed to sperm concentration, since it incorporates both volume and concentration.

• For any novel male contraceptive whose primary effect is on a functional sperm endpoint not captured by the WHO semen parameters (e.g., acrosome reaction), developers will need to define and justify the lower threshold acceptable for enrollment. These functional thresholds should ideally be based upon demonstrated correlations with actual fertility outcomes, even though robust, population-level data for many novel endpoints may be lacking. This threshold would additionally be used to demonstrate reversibility and a return to fertility. As clinical and epidemiological evidence accumulates, these cut-offs should be periodically re-evaluated and refined to ensure they continue to accurately predict contraceptive efficacy and reversibility.

• For dose-finding trials of novel therapeutics, developers should aim to enroll participants whose baseline values span the entire reference range for the key parameter/biomarker. Demonstrating efficacy across this spectrum of physiological variability provides confidence that the chosen dose will be effective in the broader target population.

• For efficacy studies with a pregnancy endpoint, developers may consider a requirement to exceed a specific centile for all WHO-defined parameters, or utilize another composite measure, to ensure efficacy can be attributed to the product and not the sub-fertility of the participants. For example, in one study of sub-fertile couples, male partners with a total progressively motile count (TPMC; calculated as total sperm count multiplied by the proportion of cells showing progressive motility) ≥50 M had a 45% greater chance of conception and achieved pregnancy earlier compared to those men with TPMC <50 M (median 19 months versus 36 months, after accounting for female factors.¹28 Consideration of alternative sperm/semen parameter thresholds may be particularly important for developers of on-demand contraceptive methods, as the risk of pregnancy in these approaches is more directly influenced by participant fertility, with even a single missed dose.

 The intention is not to create additional barriers to enrolling appropriate participants, but to ensure developers gain an accurate understanding of their product's efficacy, assess the alignment with the goals established in the Target Product Profile and make well-informed decisions about future development.

See <u>Clinical Sperm Parameters</u> for more information.

Recommendation: For efficacy studies with pregnancy as the primary endpoint, female partners should be aged 18-35, with a reported cycle length of 21-35 days. No proven fertility should be required.

• Trials of female methods typically utilize an age range of 18-35 for calculation of efficacy when submitting to the US FDA, with no consideration of the age or fertility of the male partner in pregnancy studies. Similarly, trials of non-hormonal female methods enroll women with a "normal" menstrual cycle, defined as having a reported duration of 21-35 days. To ensure that end-users and clinicians can readily compare male and female methods, it is expected that efficacy statistics of male contraceptives will need to utilize the same age range (18-35) for female partners. For male contraceptives with little to no expectation of female exposure to the drug, the partner safety metrics collected during late-stage clinical trials will likely be minimal, and it would be superfluous to enroll female partners over the age of 35 as efficacy outcomes cannot be utilized in the primary calculation of effectiveness.

Recommendation: When enrolling couples for studies with a pregnancy endpoint, the only social criteria that should be applied is an expectation of remaining in a monogamous relationship for the duration of the study.

• Unlike efficacy studies of female contraceptives, which merely require the female participant to record at least one occurrence of unprotected sex each month, independent of partner or relationship status, accurately measuring pregnancy risk of a male contraceptive requires enrolling a couple that intend to remain partnered and monogamous for the duration of the study. Additional non-scientific barriers to participation, such as requiring the couple to have been in a relationship for a minimum duration prior to enrollment, should be avoided, since they can hinder clinical trial recruitment and enrollment unnecessarily.

 If a couple does separate during the efficacy portion of the study, the male partner may opt to transfer to a male-only cohort and continue to provide safety and sperm-based efficacy data, rather than having his participation truncated.

141114121413

1414

1415

1416

1417

1418

1408

1409

1410

Recommendation: Clinical trials for initial approval of a new male contraceptive method should be limited to adults (defined by the FDA as 18+ for drugs and 22+ for devices). Male contraceptive developers should seek a deferral from regulators to delay enrolling adolescent males on trials of male contraceptives until safety and efficacy has been established in adults. Studies in adolescent males are important and should utilize a sperm-related endpoint that has been well-characterized as a surrogate for efficacy in adult studies.

1419 1420 1421

1422

14231424

1425

1426

1427

1428

1429

1430

1431

1432

14331434

1435

The committee strongly agreed that regulators would be likely to grant a deferral for studying a novel male contraceptive in adolescents until safety and efficacy are well-established. Ideally, these studies would take place after marketing approval for adult males is granted. Though there is a clear need for additional contraceptive options to decrease unplanned teen pregnancies, there is potentially added risk with the use of male contraceptives during puberty, especially with hormonal agents. While adolescent females are routinely prescribed hormonal contraceptives for pregnancy prevention and menstrual disorders, drugs and dosages have been refined for decades in this population. Male puberty is typically considered to have both a longer duration and to occur later. Therefore, usage in late adolescence (18+) may also need to be evaluated carefully, possibly through sub-group analysis of a larger adult study. Ultimately, study protocols for pediatrics will need to be developed in close consultation with regulators, tailored to the drug's mechanism of action and potential safety signals identified in adult males.

143614371438

1439

1440

• By first establishing a surrogate endpoint in adult males, such as a sperm count threshold correlated with pregnancy prevention in adults, this can then be utilized to assess direct efficacy in adolescent males. (See <u>Biomarkers</u>)

Clinical Sperm Parameters

Before a male contraceptive can be clinically evaluated for pregnancy prevention, the successful onset and reversibility of effects on sperm production, ejaculation, or sperm function will have to be demonstrated in human males. Then, in pregnancy-prevention clinical trials for chronically dosed contraceptives with delayed efficacy, each male participant should be tested to demonstrate that his sperm count or sperm functional parameters have decreased to a threshold that developers expect will prevent pregnancy before he and his partner rely on the contraceptive as their only form of pregnancy prevention.

Therefore, standardized measurement of sperm parameters will be critical to the success of male contraceptive clinical trials. Since the assays used to measure many sperm parameters are not standard practice at every hospital and clinical trial site, developers should design and implement plans for standardized sperm analysis

1456 throughout the clinical trial process.

Recommendation: Recent hormonal male contraceptive trials have settled on reducing sperm concentration below a threshold of 1 million sperm per mL, but contraceptives that work through mechanisms other than hormonal inhibition of spermatogenesis may need to propose different thresholds for sperm concentration, count, or other relevant parameters that are expected to correlate with clinical efficacy.

• Though there is clear consensus that absolute azoospermia would result in full contraceptive efficacy, the presence of any motile sperm in semen could potentially result in a pregnancy.

• Previous male hormonal contraceptive trials have established that male participants with sperm concentrations ≤1 million per mL experienced an unintended pregnancy rate of roughly 1 per 100 person-years,¹²⁹ similar to that of existing female hormonal contraceptives,¹³⁰ while earlier trials with thresholds of up to 5 million sperm per mL observed somewhat higher rates of pregnancy.^{129,131} However, these trials did not assess whether the residual sperm produced by the men in the study had any functional

- defects, so this incidence of unintended pregnancy may not translate equivalently to non-hormonal methods that result in similar sperm counts.
- For contraceptives that do not result in inhibition of spermatogenesis, different target values for sperm parameters such as motility, morphology, acrosome reaction, etc., need to be developed. Unfortunately, due to the limited clinical history of contraceptives with these novel mechanisms of action, there is little existing data that can be used to predict the risk of pregnancy associated with a given level of alteration of particular sperm parameters by potential contraceptive molecules. The committee unanimously agreed that sperm parameter distributions in the fertile population, such as those compiled by the WHO, 86,132 should not be directly extrapolated to create predictions or criteria of contraceptive efficacy, given that these values have been generated by evaluating fertile couples and sperm parameters may co-vary with one another, leading to statistical confounding factors. Furthermore, due to the inherent differences between the human reproductive system and those of common preclinical species, as well as the limited knowledge about the *in vivo* behavior of human gametes in the female reproductive tract, caution should be taken when predicting human effectiveness based on preclinical animal studies.
- Vasectomy alternatives and vas-occlusive devices may choose to use the
 1498 American Urological Association's guideline for successful vasectomy
 (≤100,000 non-motile sperm per mL)¹³³ as a target value.
 - Committee members stressed the importance of Total Progressively Motile Sperm Count (TPMC) as a potentially superior predictor of pregnancy risk, as compared to single-parameter measures of sperm count such as total sperm count or sperm concentration, since TPMC reflects a combination of sperm concentration, motility status, and ejaculate volume. 128,134

Recommendation: Reversibility and post-treatment recovery should be defined by a return to sperm parameters above the 5th percentile of the reference population range for fertile men as described in the most current version of the World Health Organization Laboratory Manual for the Examination and Processing of Human Semen, as opposed to individual baseline values.^{86,132}

• Males can display significant fluctuations in their semen parameters between subsequent ejaculate samples. 135–137 Though the establishment of an accurate initial baseline is strongly recommended to ensure participants meet the inclusion criteria, using a minimum of two semen samples (see the 'Study Participants' section), a return to this individual baseline should not be required to deem a participant recovered. Classifying a contraceptive as successfully reversible only if each man returns to semen parameters that are not statistically different from his baseline values would likely cause many false positives for supposed contraceptive irreversibility, due to the natural background variation in semen parameters over time. Further, this requirement could necessitate significantly more semen samples at study completion, which would unnecessarily prolong trial duration and increase study cost and burden on participants.

Recommendation: To ensure accurate and reproducible measurements, all semen preparation and analysis for male contraceptive clinical trials should be conducted by experienced andrology laboratories that regularly conduct high-complexity semen analysis, and throughout the trial technicians must utilize consistent equipment and protocols that are compliant with the most current version of the World Health Organization's laboratory manual for the examination and processing of human semen.

• Though the WHO laboratory manual for the examination and processing of human semen provides standardized guidance on methodology, ⁸⁶ andrology labs that routinely perform quantitative semen analysis are better positioned to maintain technician proficiency and ensure consistent, high-quality results.

Recommendation: Studies recording sperm count as an endpoint should utilize Computer-Aided Sperm Analysis (CASA) machines if possible. If CASA is not feasible, well-trained technicians at each study site can perform manual sperm counting. As a less desirable option, it is possible to ship semen samples to a central lab for sperm counting, but shipping introduces potential sources of variation that must be managed with care.

• If study budget and logistics allow, developers should utilize modern

1550 Computer-Aided Sperm Analysis (CASA) machines to record sperm count, operated by well-trained technicians using consistent consumables and protocols. Quantifying sperm count using CASA machines is considered 1552 "moderate complexity" in the Clinical Laboratory Improvement 1553 Amendments (CLIA) test rating system. 138

1555 1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1554

1551

Manual sperm counting requires less expensive equipment but is a skill that requires training and experience and can show significant variation between technicians if they are not well-trained. As a result, manual quantification of sperm count is considered "high complexity" in the CLIA rating system.¹³⁸ Developers should be aware that some andrology laboratories only evaluate semen qualitatively for presence or absence of sperm and motility. Presence/absence measurement is rated as "moderate complexity" in the CLIA system¹³⁸ but will not provide sufficient detail for the purposes of a contraceptive clinical trial. If otherwise-promising clinical sites do not possess technicians with experience in manual sperm counting, these technicians need to be trained to perform the test in advance of the clinical trial and undergo regular proficiency testing to ensure output of high-quality data.

1568 1569 1570

1571

1572

1573

1574

1575 1576

1577

1578

1579 1580

1581

1582

1583 1584

1585

1586 1587

In general, best results in semen analysis are obtained when the analysis is performed locally, soon after sample collection. Further, as stated above, Total Progressively Motile Sperm Count, which requires measurement of motility within an hour of ejaculation, is a preferred measurement over Total Sperm Count. However, as a less desirable option, if developers decide to measure only Total Sperm Count, it is possible to ship semen samples to central laboratories for counting because this measurement does not require the cells to be living. This could lead to greater standardization of analysis for multi-site trials, but also introduces potential sources or variation that could lead to degradation or agglutination of sperm cells, which could cause inaccuracies in counts. Because proteases and bacteria in semen can degrade sperm cells over time, if living sperm cells are transported in the original semen samples, shipping temperature and time between sample collection and analysis must be standardized. If sperm cells are diluted into extenders or fixatives before shipping, great care must be taken to accurately record original semen volume and volumes of any diluents to allow for accurate calculation of original sperm concentration values.

Recommendation: For studies measuring sperm function as an endpoint, developers should utilize Computer-Aided Sperm Analysis (CASA) at each study site.

15911592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

16131614

1589

1590

Functional parameters such as motility and hyperactivation are negatively impacted by shipping time and sample storage conditions, so these parameters must be measured locally at each clinical site, within an hour of semen sample collection. The committee recommends the use of Computer-Aided Sperm Analysis (CASA) machines, which provide automated assessments of semen parameters such as concentration, many different motility measurements, and hyperactivation. Some models can also assess parameters like sperm morphology, vitality, DNA integrity, and more. However, it is worth noting that each model of CASA machine may use different algorithms to calculate these parameters, and so multi-site trials should ensure that all sites are using the same model. These instruments can speed data collection and reduce inter-observer variation, though careful setup, calibration, and training is still necessary. Additionally, the instruments are susceptible to error in certain cases, such as samples with dense cellular debris or significant sperm agglutination, and so experienced technicians should still review the videos captured by CASA to check for such issues. 139 As such, measurement of sperm motility using CASA is rated "moderate complexity" in the CLIA rating system, while manual motility analysis is rated "high complexity". 138 Importantly, modern CASA machines can also record all of their video and photo measurements for digital sharing with a central lab, which offers the possibility of centralized analysis and quality control through remote verification of measurements.

1615 1616 1617

1618

1619

Recommendation: Subtle abnormalities in sperm morphology should not be used as indicators of contraceptive efficacy. Only significant defects such as pinheads, globozoospermia, lack of functional flagella, etc. are reliably linked with male infertility.

1620 1621 1622

1623

1624

1625

1626

1627

• Humans have a high baseline rate of sperm morphological abnormalities, with the 5th percentile of fertile men having only 4% of their sperm showing normal morphology when measured using the criteria in the 5th and 6th editions of the WHO laboratory manual for the examination and processing of human semen.¹³² Because of the experimental difficulty of proving which sperm cell subpopulations are actually capable of reaching and

fertilizing an egg in humans, it remains unknown whether moderate morphology defects, such as large heads or residual cytoplasmic droplets, actually prevent fertilization *in vivo*. Therefore, potential male contraceptives that work through inducing sperm morphology defects should be designed to cause significant defects in nearly all sperm in the ejaculate, both to maximize chances of these defects preventing pregnancy and to facilitate easy identification of the intended cellular phenotype by clinical andrology lab technicians.

• Morphology can be measured either manually or by certain models of CASA machines, though both methods are rated "high-complexity" in the CLIA standards. Since morphology is measured on slides of fixed sperm cells, it is possible to ship these slides to a central lab for analysis if desired.

Recommendation: At-home sperm tests, such as lateral flow tests for sperm antigens, may be useful as adjunct diagnostics but formal andrology lab tests are needed to assess key clinical trial decision points, such as entering an efficacy stage or classifying a participant as recovered.

• There has been a recent increase in the development of at-home sperm analysis tools of various formats, such as rapid antigen tests and smartphone microscopy tools, 16 and at least one of these tools has been evaluated as an adjunct measurement in a hormonal male contraceptive clinical trial. 140 The committee concluded that none of these tools have yet been proven reliable enough for use as a primary measurement tool in a contraceptive clinical trial. However, they can be a useful tool for interim analyses during clinical trials – for example, providing an added confirmation for study participants that their results remain durable between clinic visits once they have reached the efficacy stage of the trial.

 Recommendation: The schedule of semen evaluations in clinical trials of male contraceptives should be chosen based on the mechanism of action, anticipated time to contraceptive onset and recovery, and clinical trial phase, with the expectation of less frequent collections later in development as the objective shifts from characterization to confirmation.

• **Screening:** Semen analyses are initially performed during the participant screening phase of each trial to ensure participants meet the minimum criteria for inclusion. The 6th edition of the WHO laboratory manual for the

examination and processing of human semen recommends that "The ejaculate should be collected after a minimum of 2 days and a maximum of 7 days of ejaculatory abstinence" to minimize variability arising from ejaculatory frequency. 86 However, some committee members recommended a maximum of 5 days of ejaculatory abstinence, based on reports of increases in sperm count and declines in motility after this point. 141

• Drugs and devices targeting spermatogenesis or causing azoospermia – Phases 1 and 2: The frequency of collections is expected to be greater in earlier phase trials as developers seek to characterize the onset of efficacy and time to recovery. For example, Phase 2a trials of agents that suppress spermatogenesis may wish to sample every two weeks in order to sufficiently characterize the time course of onset and reversibility for the primary parameters of interest, such as suppression of count or motility. Once those dynamics are well understood, Phase 2b trials of the same agents might only sample monthly. For methods with a concern about sperm count rebound, increased sampling frequency may also be necessary in the first few months of a study, with decreased frequency later in the efficacy phase. Any long-acting devices with a planned end-of-life may also require more frequent monitoring as the expiry date of the device approaches.

• Drugs and devices targeting spermatogenesis or causing azoospermia – Phase 3/Pivotal: In Phase 3 or pivotal studies, there is a need to balance the required "actual use" scenario and participant burden with data collection for efficacy. In these studies, quarterly semen analyses are likely to be sufficient, with targeted assessments after three and six months of suppression to ensure maintenance of contraceptive effect and to detect late rebound for drugs targeting spermatogenesis. However, developers must also consider how on-study sampling plans may impact the use of the product once it is marketed. For example, if regulators place a requirement for frequent semen sampling as a requirement on the product label (based on Phase 3 data and study plan), this requirement might become a potential impediment to product adoption. However, at-home self-tests may make such a requirement more acceptable to end users.

• On-demand products – Phases 1 and 2: For on-demand products with a short onset or duration of action, trial sampling schedules must be uniquely tailored to the product's pharmacokinetic and pharmacodynamic profile.

Standard schedules for sampling and follow-up used in chronic or longacting contraceptive trials, such as WHO's recommended 2-day interval between subsequent ejaculations, are likely too widely spaced to capture the pharmacodynamics of onset, peak activity, and return to fertility. However, developers hoping to collect numerous timepoints to fully characterize these effects should be aware of the impact of frequent ejaculation on the semen parameters of interest. Meta-analysis has shown that in fertile men, duration of ejaculatory abstinence has significant effects on ejaculate volume, total sperm count, and sperm concentration, but no significant effects on the percentages of progressive motile sperm, morphologically normal sperm, or living sperm. 142 Only very limited data are available on the impact of more than two ejaculations within the same day, but the trend of sperm parameters agrees with that found in the metaanalysis mentioned above. 143 Therefore, for drugs acting primarily on sperm motility, daily or more frequent semen collections from each participant may be appropriate, as long as motility is quantified using metrics that do not use sperm count or concentration as an input value (such as percent motile or percent progressive). On-demand drugs with mechanisms of action targeting hyperactivation, acrosome reaction, or other functions that are not measured in standard semen analyses will likely require preliminary studies to characterize the effect of highfrequency semen sampling on these functional parameters.

172717281729

17301731

1732

1733

1734

1735

1736

1737

17381739

1706

1707

17081709

1710

1711

1712

17131714

1715

1716

1717

1718

1719

1720

1721

1722

1723

1724

1725

1726

• On-demand products – Phases 2 and 3: In later-phase clinical trials, it is expected that on-demand agents will need to be evaluated as chronically administered agents, as regulators apply ICH Guidance E1, "The Extent of Population Exposure to Assess Clinical Safety for Drugs Intended for Long-Term Treatment of Non-Life-Threatening Conditions" to all drugs expected to have repeated intermittent use for longer than 6 months. For drugs designed for frequent use, a clear understanding of pharmacokinetics and pharmacodynamics, as well as whether accumulation is occurring systemically or in semen, is necessary. This understanding is not only crucial for selecting recovery time points but also for defining the maximum anticipated usage.

Acceptable Efficacy

There are currently no published regulatory guidelines related to efficacy for male contraception.

Regulatory agencies have published guidance on the expected efficacy of contraceptives in Phase III or pivotal trials, but these guidelines are clearly directed at hormonal female contraceptives with an expectation of near-perfect efficacy. The EMA states in the <u>Guideline On Clinical Investigation Of Steroid Contraceptives In Women</u>, "The key studies, carried out in a sufficiently representative population, should normally be at least large enough to give the overall Pearl Index (number of pregnancies per 100 woman years) with a two-sided 95% confidence interval such that the difference between the upper limit of the confidence interval and the point estimate does not exceed 1 (pregnancies per 100 woman years)."¹¹⁷

For novel products which presumably do not utilize a hormonal mechanism of action and may have a greater Pearl Index (i.e., lower efficacy), the guidance notes the potential use of a comparator and a potential willingness to approve a product with a higher Pearl Index in exchange for greater end-user acceptance: "For a new product utilising a mechanism of action which may result in a relatively high pregnancy rate (PI>1), comparative studies may be necessary... Comparative safety data provide important information for the user and the prescriber in the choice between different methods. A higher Pearl Index may under certain circumstances be acceptable if, e.g. tolerability is very high."

<u>Health Canada</u> and <u>Australia</u> are in accordance with the EMA guidelines for female hormonal contraception. 145,146

The US <u>FDA</u> specifies, "Combined hormonal contraceptives are very effective at preventing pregnancy, typically having an upper bound of this 95% confidence interval (for the Pearl Index) below 5 in adequately designed and conducted trials. For hormonal contraceptives with fewer risks, such as oral progestin-only contraceptives, a slightly higher upper bound of this 95% confidence interval may be acceptable." ¹¹⁶

Recommendation: Developers should set a clear efficacy target at the outset of development—anchored to the envisioned target product profile—rather than defaulting to benchmarks established for existing female contraceptives.

• The future of male contraception will span a wide range of use cases. Standalone products designed to be the only form of contraception used by

a couple are currently under development, but secondary methods designed to be adjunctive to other forms of contraceptives (e.g., condoms or female methods) will arise. There was strong agreement by the committee not to advocate for a "one size fits all" benchmark for efficacy. This view arose from a disagreement among the committee as to what methods might generate commercial interest and end-user acceptability.

• Given that the existing male options are either permanent (vasectomy) or have marginal efficacy (condoms with an actual-use failure rate of 8 to 13%), there is clear unmet need. Additionally, a 2023 survey of over 3000 men in the US found that 11% relied upon withdrawal for pregnancy protection. Global market research suggests that a wide range of efficacies are acceptable to men and that tolerance for different benefit: risk ratios exist. For example, couples uninterested in permanent methods, due to a future desire for children, but for whom highly efficacious female methods are contraindicated, may accept any product with efficacy superior to a condom. Additionally, there is interest in alternatives to condoms for use in a layered approach, where each partner utilizes their own method, for maximal pregnancy prevention.

• In recent years, the FDA has approved several female products with a PI>1, concluding that the benefit of new options for decreasing the risk of unintended pregnancy outweighed any method-related risks. For example, Opill¹⁵⁰ (norgestrel, a progestin-only product) was approved as the first non-prescription hormonal oral contraceptive, with the review stating that, "...the Pearl Index in real-world use after a nonprescription approval will likely be higher, perhaps in the range of 7% or somewhat higher." This is comparable to published historical data for progestin-only pills. ¹⁵¹ Similarly, Phexxi, a non-hormonal, on-demand vaginal gel, was approved, despite 13.7% of participants becoming pregnant over just seven menstrual cycles on study, resulting in a calculated PI of 27.5. ¹⁵²

• If regulators, such as the EMA, were to apply the efficacy thresholds designed for the most effective female hormonal products to new male contraceptives, and the efficacy is not anticipated to result in a PI < 1, the size and scope of clinical trials may be prohibitive for developers. To meet the statistical requirements of the EMA guidelines (referenced above) with 90% power, using the calculations of Gerlinger et al., greater than 1300 and 1700 year-long study participants would be required to generate assumed-

true Pearl Indexes of 2 and 3, respectively.¹⁵³. Alternatively, if comparator studies are required, condoms would be the sole reference option. Such a comparison study would also require a substantial number of subjects, and the costs and enrollment timeline would be considerable, especially considering the minimal scientific value a condom-only arm would likely add.

• For the reversible vas-occlusive devices under development, vasectomy might appear to be an obvious comparator. However, surgical procedures are not devices, and vasectomy is not regulated by the FDA. Therefore, it is expected that vas-occlusive devices would need only to establish standalone efficacy. Even if a vas-occlusive method falls short of vasectomy-level efficacy, the product could still be attractive to users if it offers the meaningful advantage of reversibility, meeting the unmet need among men who do not desire permanent sterilization.

• Ultimately, developers should establish minimum and preferred efficacy goals in the context of the product's intended use, user group, safety, and tolerability as they develop a Target Product Profile. Regulatory strategy should also be considered, especially for male methods likely to be used in a layered manner with female contraception. Regardless of where initial studies are performed, developers may opt to perform pregnancy trials in the US and seek initial market approval from the FDA, given the apparent wider acceptable efficacy range as compared to other regulatory agencies.

Pregnancy Testing and Management

Pregnancy testing and management in male contraceptive clinical trials must balance the regulatory requirement to accurately assess pregnancies that occur due to method failure or user non-compliance, while minimizing potential burdens on the female partner —including risks to reproductive health, safety concerns, and time demands. Though the committee envisions a future where one or more sperm parameters (e.g., total progressively motile sperm count) are qualified as biomarkers of contraceptive efficacy, assessing the efficacy in preventing pregnancy in couples will remain the norm for clinical trials in the near term.

Recommendation: Clinical efficacy trials must design and implement a comprehensive and participant-centered informed consent process. The integrity of the informed consent process must not be compromised by pressures to meet recruitment goals or timelines.

• The committee emphasized the importance of ensuring that participants — particularly female partners — fully understand the risk of pregnancy during study participation. Clear communication during the consent process is essential to uphold ethical standards and may also reduce the emotional impact associated with the occurrence of an unexpected pregnancy on-study.

• All participants, male and female, should be consented both jointly and individually. Consent forms should be explained to participants in person (or via videoconference) and also provided to them for review at their convenience. Participants should have the opportunity to ask questions and receive clear, thoughtful answers to support genuine understanding of any potential risks.

• Consent documents should explicitly describe the experimental nature of the method under study and the real possibility of pregnancy. Early efficacy trials will need to clearly state that the risk of pregnancy is unknown. For later-stage trials, information about expected risk (based upon earlier efficacy trials) can be provided, as well as a risk comparison with existing contraceptive methods. Consent documents should explain what will happen if a participant becomes pregnant—including required testing, clinical follow-up, and counseling—and highlight any limitations on available management options, especially if access to legal abortion is

restricted in the trial site jurisdiction. Consent documents should also specify which procedures and associated costs (e.g., ultrasounds, laboratory tests, or termination services) are covered by the trial and which will remain the participant's responsibility.

 Recommendation: Enrolled female partners should undergo pregnancy testing in the clinic at key timepoints and be provided with urine pregnancy tests for interim use at home.

- Female partners typically undergo pregnancy testing at study transition points such as enrollment and at the beginning and end of an efficacy phase (if applicable). During the efficacy phase, some trials of male contraceptives have included additional testing at periodic clinic visits, but this should be balanced with the participant burden of additional visits.
- Participants should be provided with home urine pregnancy tests and encouraged to test whenever they have concerns about a possible pregnancy. In addition, developers may wish to schedule at-home testing at specific intervals between clinic visits or set criteria such as requesting that participants utilize a pregnancy test if menses do not occur within 7 days of the expected onset. Given that female participants have naturally variable cycle durations and are included if they have cycle lengths between 21 and 35 days, this latter criterion will ensure that testing is performed at home no later than 42 days (6 weeks) after the first day of the last menstrual period, minimizing the delay between conception and detection, which is critical for timely intervention and accurate dating of conception.

Recommendation: Clinical teams should ensure a prompt, participant-centered response to any positive pregnancy test, prioritizing timely follow-up and support tailored to the couple.

• Clinical visits should be initiated as soon as possible after a positive pregnancy test to provide rapid access to options, including medical abortion, if desired. Visits should include blood hCG testing to confirm pregnancy, ultrasound (if needed), and discussion of next steps with the couple—all ideally occurring during the same visit. However, participants should retain full agency in the pace and extent of evaluation, including the option to delay decision-making or decline ultrasound, if preferred.

Overall, the committee focused on the emotional complexity of unintended pregnancy and ethical care for participants. Ideally, studies should provide counseling; however, in the absence of on-site support, facilitated referral to an OB/GYN or appropriate external counseling services should be the standard protocol.

Recommendation: Pregnancy should be defined by a single clinical hCG test result and not require serial, quantitative sampling.

1917

1918

1919

1920

1921

1922

1923

- A single positive urine or serum human chorionic gonadotropin (hCG) test performed by the clinical laboratory should be considered sufficient to define pregnancy for evaluation of study outcomes. While sequential serum beta-hCG testing offers quantitative data that may aid in dating or assessing ectopic pregnancies, they are not strictly required for documenting pregnancy.
- A negative clinical test, following a positive at-home test, would not be counted as a pregnancy. However, if a subject is lost to follow-up after reporting a positive home pregnancy test, U.S. regulators have generally required that case to be counted as a pregnancy, even in the absence of clinical confirmation (such as ultrasound or beta-hCG measurement).
- Recommendation: Male contraceptive product developers must define a reasonable pregnancy efficacy window to classify whether pregnancies should be attributed to failure of the investigational drug/device. Additionally, clinical protocols should include a plan to identify failure due to noncompliance.
- 1936 For female hormonal contraceptive methods, both the EMA and the FDA provide guidance on when pregnancies are considered related to product 1937 use. 116,117 These timeframes are informed by known pharmacodynamics and 1938 are tailored to the mechanism of action, expected duration of effect and 1939 reversibility of the specific product, and aim to provide consistent and 1940 comparable measures of efficacy across products. These EMA and FDA 1941 guidelines serve to delineate which pregnancies are "on-treatment" or 1942 attributable to the investigational product, as distinct from those occurring 1943 after the expected return of fertility. Specifically, the FDA guidance states, 1944 "On-treatment pregnancy should be defined as any pregnancy that occurs 1945 during use of the product or within a specific timeframe after last use of the 1946

product."¹¹⁶ For example, conception calculated to have occurred within 7 days of the last day of treatment with a daily oral combined hormonal contraceptive would be considered on-study, while for intrauterine systems or devices, only those pregnancies <u>detected</u> within 7 days of removal would be considered associated with the failure of the product, with the assumption that conception must have occurred while the device was still in place. Conversely, the EMA states, "Pregnancy rates should be described by Pearl Index and life table analysis including all pregnancies <u>during treatment</u>. Pregnancies following premature discontinuation of study medication should also be included in the calculations, unless the date of conception determined by a valid method (e.g. ultrasound, beta-hCG) is without doubt after the premature discontinuation."¹¹⁷ Historically, the differing windows utilized by regulators have led to notable differences in efficacy calculations.^{154–156}

• For male contraceptives currently in development, the mechanisms of action and timelines for onset and recovery of the contraceptive effect vary widely, necessitating the careful development of product-specific "onstudy" parameters. Developers will need to accurately identify the expected onset and duration of contraceptive protection and propose methodology to regulators accordingly. In recent Phase II trials of the combination Nestorone/testosterone gel (NES/T), subjects did not enter the defined "efficacy stage" until serial confirmation of two sperm concentrations below the target threshold of 1 million/mL. Pregnancies conceived within 7 days of the last dose were considered to be on-study. Conversely, an on-demand, single-use male contraceptive product would have a much shorter window after discontinuation for pregnancies to be considered on-study.

• For user-dependent methods, developers must justify the exclusion of any on-study pregnancy. Objective evidence of non-compliance could be identified through review of participant diaries or pill counts. It is also possible that pharmacokinetic sampling or semen analysis at the time of pregnancy confirmation could be insightful. However, if a participant has subsequently resumed dosing after a lapse, the delay between missing one or more doses and sampling may mask earlier non-adherence. (See the Evaluation of Clinical Efficacy section)

Recommendation: Ultrasound should only be used when necessary for pregnancy dating.

1986

1987

1988 1989

1990

1991 1992

1993

1994

1995

1996

1997

1998

1999

2000

2001

2002

2003

2004

2005

2006

20072008

2009

2010

2011

2012

2013

20142015

• Transvaginal ultrasound should be used only when pregnancy dating is necessary to determine whether conception occurred during the treatment period, or the defined "on-study window." To avoid unnecessary burden on the pregnant partner, ultrasound use should not be mandated universally upon positive pregnancy test. Rather, investigators should assess the need for ultrasound based on the product's mechanism of action, the couples' duration on study, as well as study diaries and beta-hCG test results. Female participants must retain full agency in deciding whether and when to undergo transvaginal ultrasound, even if declining the procedure results in counting of an on-study pregnancy that might have otherwise been excluded.

Recommendation: Paternity testing should not be utilized in contraceptive efficacy trials.

- In female contraception studies, pregnancies clearly arise from the fertility of the participant receiving the investigational drug or device, regardless of how many sexual partners the woman may have. Unique to male contraception, the female study participant could still become pregnant as a result of intercourse with a partner external to the study, even if her male partner in the study was compliant with the contraceptive method and the method was functioning perfectly. As such, the overall calculated efficacy of a product may be underestimated based on pregnancies arising from non-participatory partners. While this is unfortunate for the product developers and study sponsors, attempting to assign paternity is ethically problematic and may breach participant confidentiality and undermine trust between investigators and study subjects. Moreover, paternity testing may disrupt a relationship and could result in targeting of the female partner emotionally, physically or legally. Additionally, legal and regulatory barriers related to genetic testing in many countries likely hinder the use of paternity testing in clinical research settings.
- Emphasis should remain on timing of conception, not genetic attribution, when determining whether a pregnancy constitutes a product failure. The committee unanimously agrees that prioritizing the privacy of participants outweighs the limited likelihood of a meaningful shift in efficacy statistics.

Evaluation of Clinical Efficacy

Efficacy statistics in contraceptive development serve numerous critical purposes—satisfying regulatory agency evaluation, enabling direct comparison across contraceptive methods, supporting clinician recommendations, and guiding informed end-user decision-making. These statistics, such as the Pearl Index or life table cumulative probability estimates, express failure rates (i.e., the number of pregnancies) and provide a standardized means of quantifying the likelihood of pregnancy under defined conditions of use. For clinicians, these statistics optimally translate complex clinical trial data into actionable information that can be readily communicated to end users weighing contraceptive options. For end users, efficacy statistics are intended to clarify the relative risk of unintended pregnancy, facilitating choices aligned with individual preferences and reproductive goals. From a regulatory perspective, standardized statistical endpoints enable the comparison of benefit-risk profiles across product types and are essential for establishing claims of contraceptive effectiveness.

FDA regulatory guidelines are focused on the development of female hormonal contraceptives and indicate a requirement for the Pearl Index (PI) to be calculated as the primary pregnancy efficacy endpoint. This metric is defined as the number of pregnancies per 100 person-years of exposure. Recognizing the historical use of 28-day cyclic methods, such as oral contraceptive pills, the FDA traditionally recommends that the duration of contraceptive exposure be broken into 28-day cycles (resulting in 13 cycles per year) as follows:

PI = Number of pregnancies x 13 cycles x 100

Number of 28-day cycles in analysis

However, for female contraceptive methods that do not pharmacologically constrain the menstrual cycle to 28 days in length, such as the non-hormonal female contraceptive gel Phexxi¹⁵⁸, an alternative calculation, based on the total number of days at risk (i.e., days on study) has been utilized:

2051 PI = Number of pregnancies x 365.25 days x 1002052 *Total number of days exposed/at risk* 2053 2054 2055 2056 The FDA additionally instructs developers to include a life table analysis as a supportive analysis to provide monthly and cumulative failure rates. 116 Rather than 2057 presenting a simplified average of all participants, regardless of their duration on study, 2058 2059 as the Pearl Index does, life table analyses calculate the probability of pregnancy per cycle 2060 or month, based on the number of study participants at risk during that interval. For 2061 example, a life table analysis can directly provide the risk of pregnancy in the first month of use. Additionally, the cumulative risk is calculated, allowing for comparison of studies 2062 of different durations and helping users understand their risk of pregnancy over time. 2063 2064 The <u>EMA guidelines</u>¹¹⁷ (also adopted by the <u>Australian TGA</u>¹⁵⁹) state that both 2065 Pearl Index and life table analysis calculations should be performed and included in 2066 submissions, with no superior weighting given to the Pearl Index. 2067 2068 2069 *Neither the Pearl Index nor life table analyses adequately characterize the efficacy* of male contraceptives. 2070 2071 2072 Recommendation: Male contraceptive efficacy studies of products targeting spermatogenesis should implement a standardized reporting framework to 2073 comprehensively assess method performance and allow for direct comparison 2074 2075 between products. This framework must separately report individual components of contraceptive failure—suppression failure, sperm rebound, and 2076 2077 unintended pregnancy. 2078 2079 Male contraceptive efficacy studies present unique considerations compared to female methods as the product is taken by the man to prevent 2080 an unwanted effect in his female partner, necessitating a standardized and 2081 comprehensive approach to reporting outcomes. Unlike female 2082

contraceptives, many male methods—particularly those that suppress testicular sperm production—follow a distinct clinical trial structure that includes a suppression phase, an efficacy phase, and a recovery phase. ¹²⁹ In contrast, on-demand male contraceptives do not require a lengthy suppression phase, as they are inherently developed to be fast-acting and reversible after each use. These differing pharmacologic approaches introduce distinct timelines and outcome categories, all of which must be clearly defined and systematically reported to ensure consistency and comparability across products.

- To provide a clear and complete picture of a male contraceptive's performance, Amory (2025) has detailed a framework to standardize reporting of the multiple components of total contraceptive failure:
- Suppression failure refers to the number of men who do not achieve the defined threshold of sperm count (or functional sperm parameter) suppression during the initial phase of treatment. Separating this metric is vital because it informs potential users about the likelihood of being a "responder" to the method, which is a critical piece of information for men and clinicians. For instance, a product might be highly effective once suppression is achieved, but if a substantial percentage of men fail to suppress, this must be clearly disclosed.

• Sperm rebound accounts for instances where sperm parameters rise above the contraceptive threshold during the efficacy phase, indicating a loss of contraceptive protection. This can arise naturally, as observed in a small percentage of men treated with long-acting hormonal methods of male contraception. Sperm rebound could also result due to insufficient drug exposure, whether arising through shifts in pharmacokinetics over time or due to non-compliance with self-administered contraceptives. The incidence of sperm rebound can inform future users and clinicians of pregnancy risk, but also highlight if routine monitoring is needed to ensure adequate and durable suppression.

 Unintended pregnancy is the final component of method failure, indicating a pregnancy occurred while the method was in use, after an initial suppression threshold had been met.

• Importantly, the first two measures–frequency of sperm suppression failure and sperm rebound can–be assessed in all male clinical trial participants,

regardless of whether they have a female partner. These data can be pooled across all studies of a given product, provided they were conducted at the same dose for an adequate duration, enabling the detection of meaningful trends.

Recommendation: In studies of male contraceptives that evaluate pregnancy, the primary efficacy endpoint should be calculated using the life table approach, rather than the Pearl Index.

• Though the Pearl Index is the traditional measure of contraceptive efficacy used by regulators to evaluate the performance of contraceptive methods, it is of limited utility to users and providers. Perhaps most troubling is that it suffers from a form of selection bias; individuals who are at less underlying risk of pregnancy tend to contribute more time to the analysis. Therefore, the Pearl Index will vary as a function of the duration of the study from which it was estimated, and so it is not generalizable to any individual. For example, in long-term studies of contraceptive methods, the Pearl Index decreases over time, with those most likely to conceive experiencing early pregnancies (whether due to coital frequency, naturally higher fecundity, or perhaps less practice with using the method correctly). As a result, shorter trials often appear to have a significantly higher PI than longer trials.

• In contrast, the cumulative probability of pregnancy obtained from life table methods provides a clear interpretation for users of the chance a woman has of becoming pregnant when using the method over a given period of time. Therefore, to adequately define the likelihood of pregnancy, the standard for male contraception should be life table analyses that provide cumulative (monthly) pregnancy risk to a couple. For example, in clinical trials of the female contraceptive vaginal ring Annovera, containing segesterone acetate and ethinyl estradiol, there was a 1.1% likelihood of pregnancy over the first six cycles and a 2.6% likelihood of pregnancy over 13 cycles of use. The Pearl Index for this same group was 2.98, which provides no indication of how risk changes over time. An excellent review and discussion of the issue and related statistics can be found in Mauck et al. (2023). 161

 Nevertheless, several committee members emphasized that developers should anticipate that regulators will still require the calculation of the Pearl Index as a secondary endpoint.

• An additional consideration in the evaluation and interpretation of male contraceptive efficacy (as well as in female non-hormonal methods) is the variability in menstrual cycle lengths. When female partners are enrolled in male contraceptive trials, cycle lengths are typically permitted to range from 21 to 35 days, resulting in a potential range of 10 to 17 cycles over a year. Developers should keep in mind that, unlike female oral contraceptive trials—where participants typically experience 13 pharmacologically-regulated cycles per year—this broader range introduces variability in the number and timing of potential fertile windows. Such differences should be carefully considered when designing studies and interpreting statistics.

Recommendation: Developers of male contraceptives should pre-specify a comprehensive set of detailed reasons for discontinuation and implement reporting systems to systematically collect, classify, and report participant data, clearly distinguishing why participants did not complete a study, whether due to adverse events, contraceptive failure, lifestyle factors, non-compliance, or other causes.

• While unintended pregnancies are the typical primary efficacy endpoint in contraceptive trials, participant retention and reasons for non-completion are equally critical in understanding a product's real-world utility. High dropout rates are common across all types of clinical trials and occur for a variety of reasons (e.g., intolerance to side effects; personal lifestyle changes such as relocation or a change in relationship status; challenges related to study requirements). This can obscure the true rate of ongoing effective contraception, a metric that reflects both biological efficacy and user adherence or tolerability.

 Reporting systems can be designed to include more than one level of classification, as well as investigator notes, allowing for enhanced data collection, rather than relying only broad required terminology, such as "Withdrawl by Subject."

• It will also be necessary to pre-specify how study participants who are not fully adherent will be managed and classified for reporting. For clinician-

administered products, such as injections, participants who miss a scheduled re-injection can be classified as non-compliant. For self-administered methods, however, the criteria for censoring participants are more complex–especially when brief "drug holidays" may not lead to a meaningful loss of contraceptive effect.

• Regulators, including the FDA and EMA, expect developers to fully account for missing data and discontinuations in efficacy analyses using appropriate censoring and sensitivity methods. However, a more detailed understanding of the reasons for dropout also informs method acceptability—a key determinant of real-world use. Precise categorization and transparent reporting of dropouts will allow for better-informed decision-making for potential users and clinicians. This is particularly important in the male contraceptive space, where public trust is still being established. By investing in robust dropout tracking and transparent reporting, developers can provide the information needed to aid clinicians and users in assessing both the likelihood of continued use and the long-term effectiveness of the method.

Recommendation: Developers should consider utilizing data on the frequency of sexual activity for exploratory efficacy analyses in their clinical studies.

• There is a clear need to improve the understanding users have of contraceptive efficacy, especially as new products enter the market. Numerous studies, primarily focused on women, have shown that while efficacy is a primary concern, the understanding of comparative effectiveness is inadequate. There are concerns that men, whose contraceptive options have historically been minimal, have markedly less knowledge of the effectiveness of various methods. Additional tools and metrics are needed to aid users (or the clinicians counseling them) in selecting the most suitable method for the individual at a given point in their life.

The standard methods used to estimate pregnancy risk in clinical trials—namely, the Pearl Index and life table analysis—do not account for coital frequency, despite clear evidence that increased intercourse frequency is associated with shorter time to pregnancy. ^{165–167} Current FDA guidance typically requires only one or more sexual acts per cycle/month for inclusion in efficacy calculations ¹¹⁶, resulting in wide variability in baseline

pregnancy risk and potentially underestimating failure rates for users with more frequent intercourse.

• The POP100, calculated as the probability of at least one pregnancy in 100 sexual acts, is a recently introduced male-centric contraceptive measure designed to communicate frequency-based risk to men in a format that may be more intuitive. The POP100 can also potentially be viewed as a more personalized risk evaluation, especially for users of on-demand products, since the cumulative risk of an unplanned pregnancy for a couple infrequently having intercourse compared to a couple that is engaging in daily intercourse is dramatically different, and this is not reflected in a population measure such as the Pearl Index or a life table analysis. A frequency-based measure such as the POP100 is potentially most informative to users of on-demand methods, given the expected variation in usage, as well as those with very low or very high sexual frequency. However, exploratory analyses using the POP100 will need to evaluate whether a selection bias occurs, as is the case with the Pearl Index.

• Trials of contraceptive products routinely collect diary data, which can be utilized for exploratory analyses, such as the POP100, but implementation may present challenges. These statistics rely upon accurate reporting of sexual activity, which may necessitate improved digital tools with reminder functionality. Collecting this level of sexual activity detail may also present challenges in certain cultures.

Clinical Safety

The clinical safety evaluation of male contraceptive drugs is expected to follow the harmonized regulatory guidance (ICH E1) applicable to all investigational new drugs intended for long-term use with non-life-threatening conditions. These guidelines are applicable based on the expected chronic dosing of novel male contraceptives, whether due to daily dosing requirements or regular periodic usage (of 6 months or more) for ondemand products. Across all therapeutic areas, early-phase clinical studies are designed to identify dose-limiting toxicities, characterize pharmacokinetics, and establish an initial safety and tolerability profile through standard assessments, including physical examination, vital signs, and clinical laboratory panels (e.g., hematology, liver and renal function). These evaluations are equally applicable to male contraceptives.

However, male contraceptive products differ in several key respects. Most notably, they are administered to healthy volunteers of reproductive age, with the primary therapeutic goal of transiently suppressing sperm production, sperm transmission (preventing the ejaculation of sperm), or sperm function. Unlike most drug development programs, the intended pharmacodynamic effect of male contraceptives—suppression of male fertility—would be classified as an adverse outcome in other therapeutic contexts. This distinction has implications for both study design and safety interpretation, and developers must clearly communicate to regulators the delineation between intended contraceptive effects and unintended safety signals.

As an investigational new drug or device progresses into later-stage clinical trials, study objectives will transition from dose-selection to efficacy, but safety remains the primary consideration in all clinical trials. As described in FDA guidance, "Safety monitoring in a clinical trial serves two purposes: (1) to protect the safety and well-being of individual trial participants; and (2) to obtain safety information to be used in the assessment of the risk profile of the investigational medicinal product." First-in-Human/Phase I trials provide the first opportunity to assess safety in humans, characterize drug disposition, and, wherever possible, generate early evidence of product efficacy. Early Phase II studies (sometimes referred to as Phase 2a) should support rigorous exploration of dose-response and dose-duration relationships for both efficacy and adverse events. These data inform the selection of dosing regimens and monitoring strategies for later-phase trials. Over the progression of Phase I and Phase II clinical trials, the frequency and depth of evaluations typically decrease, as a safe and effective dose is defined, and product evaluation moves towards more real-world usage scenarios. The goal of Phase III studies is to gather sufficient high-quality data to determine whether

the investigational product, under actual-use conditions, can be used safely, effectively, and reliably as a sole method of contraception.

Regulators will expect a tailored, risk-informed approach to evaluating safety in clinical trials, rather than relying solely on standard clinical laboratory blood panels and vital signs. Developers should proactively address potential product-specific safety concerns before initiating clinical trials, rather than relying on prompting from regulators. The detailed guidance <u>Strategies to identify and mitigate risks for first-in-human and early clinical trials with investigational medicinal products</u>, published by the EMA, ¹⁷⁰ states that "Uncertainty may arise from particular knowledge, or lack thereof, regarding the mode of action of the IMP [Investigational Medicinal Product], the presence or absence of biomarkers, the nature of the target, the relevance of available animal models and/or findings in non-clinical safety studies... The process of designing a set of studies in a development programme is governed by the attempt to reduce this uncertainty step-by-step by gathering relevant knowledge. Sponsors and investigators should identify, a priori for each clinical study, the potential risks that might arise and apply appropriate risk mitigation strategies."

Developers will need to ensure they are considering all sources of existing safety data for their product and how this scientific information can be translated into the design of subsequent clinical development:

- Mechanism of Action: Potential on-target/off-tissue biological effects based on the drug's pharmacologic pathways. If a target is expressed in tissues beyond the reproductive system, developers should ensure that tissue expression is understood and anticipate possible effects. In addition, interaction with molecules closely related structurally and functionally to the intended molecular target should be considered.
- Known Class Effects: Safety profiles from related agents, even if not previously used as contraceptives, can inform expectations regarding potential side effects. (e.g., ion channel modulators, hormonal agents, enzyme inhibitors).
- Non-Clinical Toxicity Findings: Preclinical data from safety pharmacology, general toxicology, and reproductive toxicology studies may identify specific organ systems or safety biomarkers of concern; however, not all of these may be clinically relevant. The EMA states, "An evaluation as to whether the target organs identified in the non-clinical studies warrant particular monitoring in the CT [clinical trial] should be undertaken. Serious toxicity should lead to a more cautious approach when setting doses and applying risk mitigation strategies in the clinical setting... Some serious toxicities are poorly translated to humans, e.g.,

species-specific immune reactions with monoclonal antibodies. Such toxicities may be categorised as not clinically relevant with the appropriate data and/or rationale."170 Realistically, for male contraceptive drugs, serious nonclinical toxicities—especially when observed near projected efficacious exposures—can lead to termination of development. Model selection should therefore prioritize human translatability (target orthology/distribution, comparable exposure-response and metabolism) to generate credible safety margins and data that can inform the clinical program. (See the <u>Preclinical Evaluation</u> section.)

The EMA states explicitly that, "Experimental and/or literature-data should be taken into account when defining the degree of uncertainty of the IMP."¹⁷⁰ Given that non-hormonal male contraceptive targets are novel and there is limited to no clinical experience with many of the targets, the degree of uncertainty is higher than when new drugs in an existing class begin clinical trials. Accordingly, developers may wish to proactively mitigate safety concerns identified in the literature by performing additional animal studies or incorporating assessments into compulsory studies.

Regulatory expectations regarding clinical safety exposure for new molecular entities (NMEs) are harmonized across many agencies, including the FDA and EMA, and are outlined in ICH E1.¹⁴⁴ Developers should plan for cumulative exposure in at least 1,500 men, including 300 exposed for six months and 100 for one year, at doses equal to or higher than the dose planned for marketing, prior to submission of an application. These population sizes are designed to ensure the adequate detection of uncommon but clinically meaningful adverse events (AEs), with the expectation that many common AEs will occur within the first few months of treatment. However, some may only become detectable after longer-term use.

As clinical development proceeds, safety monitoring will continually evolve based on clinical findings. Adverse Events of Special Interest (AESIs) will need to be carefully monitored. AESIs are predefined adverse events that are of particular interest due to their likely link to the investigational product, which are either severe or occur frequently. If preclinical data or literature suggest the potential for AESI that may only emerge with prolonged dosing or in a larger population (due to its low frequency), it should not be omitted from the IND submission. Instead, developers should communicate their intent to assess the risk in later stages of development, when appropriate study conditions allow for its adequate evaluation.

When evaluating the frequency and severity of adverse events to assess the overall risk-benefit profile of a new male contraceptive, it is expected that regulators may be accepting of certain adverse effects if those effects are readily monitorable. This is because

events that can be identified through routine clinical assessments—allowing for timely intervention, treatment, or discontinuation—are generally considered less concerning than those that are abrupt, unpredictable, or irreversible. When adverse effects can be detected and addressed before causing significant harm, they are often viewed as more manageable within a clinical development program. For example, the use of combined oral contraceptives has resulted in hypertension in a subset of women, potentially leading to an increase in the risk of cardiovascular disease, including acute myocardial infarction and ischemic stroke.¹⁷¹ These risks can be minimized through regular blood pressure monitoring and discontinuation of the product where warranted.

The committee's recommendations focus primarily on concerns that are amplified with male contraceptives—the clinical assessment of potential reproductive toxicity, especially for agents that alter sperm structural or functional attributes (e.g., morphology or DNA fragmentation) and the evaluation of female partner exposure.

Recommendation: Clinical safety and pharmacokinetic assessments of male contraceptives should only be conducted in the female partner when preclinical and/or early clinical pharmacokinetic studies demonstrate that the active drug is present in the ejaculate at meaningful concentrations.

• Protection of the sexual partner is an essential consideration in the development of male contraceptives. However, current regulatory expectations do not require routine measurement of drug concentrations in semen or partner exposure assessments for most investigational products. Requirements for such evaluations are generally reserved for compounds with known or suspected reproductive toxicity based on nonclinical studies. Historically, the FDA and EMA have required seminal pharmacokinetic (PK) assessments only in cases where preclinical findings suggest the potential for semen-mediated exposure leading to teratogenic or embryo-fetal effects.

• A stepwise, risk-based decision-making process should be used to determine whether semen testing and subsequent female partner safety assessments are warranted. If non-clinical studies demonstrate measurable concentrations of active drug or its metabolites in the semen of the treated animal species, this finding may justify measurement of semen concentrations in human males during Phase I trials. If drug is detected in human semen, the potential for systemic exposure in a female partner can be mathematically modeled using standard assumptions regarding

ejaculate volume and sexual frequency. The resulting estimates of potential female exposure can then be evaluated in combination with known pharmacokinetic properties of the drug (e.g., bioavailability, volume of distribution, and clearance) to assess the likelihood of systemic uptake and the plausibility of toxicologically meaningful exposure. If these modeled estimates indicate that the maximum theoretical partner exposure is significantly below the no observed adverse effect level (NOAEL) derived from reproductive toxicology studies in animals (typically with built-in safety margins), no further female safety monitoring is warranted. Conversely, if predicted exposures approach or exceed thresholds of concern, clinical partner safety assessments may be justified.

• This structured approach will ensure that evaluation of partner risk remains scientifically grounded and proportional to actual exposure risk, while minimizing unnecessary burden on female trial participants and use of resources.

Recommendation: Developers of male contraceptive drugs should plan to follow all on-study pregnancies through outcome—whether live birth (with neonatal assessment), spontaneous abortion, elective termination, stillbirth, or ectopic pregnancy—and conduct postnatal follow-up of any resulting offspring for at least 6 months and up to 12 months to assess for developmental effects and ensure compliance with regulatory expectations.

• Regulators have widely adopted ICH E8 (R1), applicable to all clinical trials regardless of indication, which states, "...a participant becomes pregnant while participating in a clinical study, follow-up evaluation of the pregnancy and its outcome, and the reporting of outcomes are necessary." Where a live birth occurs, committee members noted that regulators, such as the FDA and EMA, typically recommend follow-up of infants from birth for six months to one year to evaluate postnatal development and detect any adverse effects potentially attributable to the investigational product, although formal guidance is lacking. Practically, this is often managed by requesting that the participating couple provide details of their pediatric well-visits.

• In the context of male contraceptives, developmental toxicity risks potentially arise from drug exposure to an embryo (via semen after conception, but before awareness of the pregnancy), or directly if a sperm

2450	cell with a drug-induced defect can fertilize an egg. Regulators may
2451	therefore expect more significant follow-up for male contraceptive drugs
2452	that impact sperm structural or functional attributes, such as sperm
2453	morphology or sperm DNA integrity, as compared to those that decrease
2454	sperm concentration or prevent sperm release during ejaculation.
2455	Pregnancy registries may be needed in the post-approval phase to gather
2456	additional data, since it is likely that few pregnancies will occur on-study
2457	with a highly effective contraceptive.
2458	
2459	

Benefit-Risk Considerations

Benefit-risk analysis is of paramount importance in the context of male contraceptive development, given that no novel male contraceptive products have yet been approved, and unique considerations are involved. Although this topic was discussed at length by the committee, the absence of established regulatory precedent and the complexity of the issues involved led to a decision not to issue a set of recommendations at this time. Instead, the committee compiled a structured summary of challenges, uncertainties, and background considerations to foster and catalyze further discussion and refinement of a regulatory framework. One unanimous recommendation did emerge: that developers should engage meaningfully with end users, as this can yield critical insights into user priorities, motivations, and unmet needs—factors essential to both product development and regulatory evaluation.

Benefits of male contraception

The intent and benefit of all contraceptives is the prevention of unintended pregnancies. Even with conservative uptake assumptions, novel male contraceptive methods could meaningfully reduce unintended pregnancies, particularly in regions with low current contraceptive use. A male contraceptive pill or reversible vas occlusion device is modeled to decrease unintended pregnancies by 3.5% to 5.2% in the United States, 3.2% to 5% in South Africa, and an astounding 30.4% to 38% in Nigeria. 10

One of the complexities of evaluating male contraceptives is that the primary benefit—pregnancy prevention—occurs in a person other than the user. However, emerging male methods have the potential to offer substantial advantages for both partners, extending beyond pregnancy prevention alone:

- Reduced contraceptive health risks and side effects for female partners: New male contraceptive options used in lieu of female methods will significantly reduce female partners' exposure to risks and side effects associated with female contraceptives. Male methods will offer an alternative method of preventing pregnancy for women with medical contraindications to hormonal methods. Additionally, the efficacy of many female hormonal contraceptive options, including emergency contraception, is lower in women with higher BMI, placing these women at greater risk of pregnancy and restricting their contraceptive options. 172,173
- <u>Enhanced contraceptive efficacy through method pairing:</u> Novel male contraceptive methods offer the potential to maximize pregnancy prevention when

both sexual partners use their own independent contraceptive method simultaneously. This layered approach may be especially impactful when the female partner is using a less effective method of contraception due to contraindications or lack of tolerance to the most effective female contraceptives. By providing a reliable alternative to condoms as a secondary line of protection, new male methods may serve as a safeguard in contexts where preventing pregnancy is critical and reliance on a single method is insufficient, but prevention of sexually transmitted infections is not a concern.¹⁷⁴

- Opportunity for shared responsibility: Male contraceptives may lead to more equitably shared responsibility in family planning, reinforcing mutual decision-making and trust within partnerships. By assuming a direct role in pregnancy prevention, men utilizing male methods will reduce the burdens currently placed almost entirely on the female partner, such as scheduling medical appointments, managing prescription refills, and enduring side effects. The redistribution of responsibility will allow balanced participation in contraceptive management.
- Enhanced reproductive autonomy and control: Male contraception empowers men to independently prevent pregnancy, expanding their options beyond condoms or abstinence. This autonomy lets men make proactive choices to avoid unintended fatherhood, treating contraception as a fundamental tool for aligning their reproductive choices with their personal values and long-term goals.¹⁷²
- <u>Improved sexual experience, compared to condoms</u>: Novel methods of male contraception, whether drugs or devices, will likely eliminate common drawbacks associated with condom use, such as decreased sensation or spontaneity.¹⁷⁶
- <u>Increased Healthcare Engagement:</u> Prescription-based male contraceptives could lead to more routine healthcare visits, especially among younger men, addressing an existing care gap where young men often lack a routine provider. For example, in the US in 2012, the preventive care visit rate for men aged 18-44 was a mere 18.5 per 100 men, as compared to 87.1 visits per 100 women in the same age range. These visits offer opportunities for preventive care, early detection of chronic illnesses, mental health issues, and sexually transmitted infections (STIs), and also serve as an entry point for comprehensive male sexual and reproductive health (SRH) services, which are sadly lacking. The services is the same age and the sexual and reproductive health (SRH) services, which are sadly lacking.

New male contraceptives will increase the range of options available, improving the likelihood of finding and consistently using a method that aligns with a couple's health needs, lifestyle, and personal preferences—ultimately improving outcomes for the entire family through pregnancy prevention. Unintended pregnancy is associated with higher odds of maternal depression during pregnancy and the post-partum period, as well as a decline in physical health, as compared to planned pregnancies. 178,179 Unintended

fatherhood also has mental health consequences, with an increased likelihood of depression compared to those who father a planned pregnancy. Unplanned pregnancies are associated with poorer birth outcomes, including preterm birth and low birth weight, especially in low- and middle-income countries. It is has often been attributed to insufficient preconception care and late initiation of prenatal care. Pregnancy intendedness is strongly associated with mother-infant bonding, which has long-term impacts on child development. The likelihood and duration of breastfeeding are also decreased for women with unintended pregnancies.

On a population level, novel male contraceptive options have the potential to decrease maternal mortality and morbidity. Globally, 260,000 women die as a result of pregnancy each year, ¹⁸⁶ and an even larger number of women (1.8%) experience significant morbidities during delivery (e.g., major obstetric hemorrhage requiring a blood transfusion, acute kidney failure). ¹⁸⁷ In the United States, women still regularly die as a result of pregnancy, at a national rate of 18.6 deaths per 100,000 live births in 2023, rising to 50.3 deaths per 100,000 live births for Black American women. ¹⁸⁸ In Nigeria, where novel male contraceptives are modeled to have a dramatic impact on unplanned pregnancies, women have an estimated lifetime risk of maternal mortality of 1 in 19. ¹⁸⁹ Ultimately, male contraceptives will benefit couples (and their future children) by supporting planned pregnancies and adequate birth spacing—factors closely linked to improved maternal health, healthier pregnancies, and better outcomes for infants and children. ^{190,191}

Risks of male contraception

On the other side of the equation lies risk. Male contraceptive developers are seeking to balance efficacy with acceptable risk—yet as novel products with unique mechanisms, these drugs lack established standards or known class effects that set a threshold for approval. In the context of evaluating clinical risk, two main categories emerge: 1) adverse events requiring medical intervention or drug cessation and attributable to the product (with regulators considering the frequency and severity) and 2) tolerability—the extent to which mild side effects are acceptable to users and do not interfere with continued use. Although regulators may place greater weight on adverse events with clinical significance, tolerability has a direct impact on adherence and, consequently, real-world product effectiveness. To minimize risk, most non-hormonal male contraceptive drug developers are pursuing mechanisms that act selectively within the male reproductive system, aiming to reduce off-target effects and avoid broader systemic impact. Acceptable risk will ultimately be defined by regulators. Still, the perspectives of both male users and their partners will hopefully help shape those

boundaries, especially given the ethical complexity of introducing risk to healthy individuals who do not bear the direct physical consequences of pregnancy.

Benefit-risk frameworks

Historically, there has been a lack of transparency in benefit-risk evaluations by regulators, leading to concerns about subjective and inconsistent processes. However, the assessment of benefit-risk (BR) profiles for medicinal products has undergone significant transformation over the last two decades, shifting towards more structured and objective approaches to enhance clarity and consistency in regulatory decision-making. Both the European Medicines Agency (EMA) and the U.S. Food and Drug Administration (FDA) have adopted more systematic methodologies, acknowledging the critical need to meticulously weigh desired outcomes against potential harms.

For new drug and biological products, the FDA primarily advocates a structured qualitative approach, emphasizing that quantitative analysis supports, rather than replaces, expert judgment. This framework is integrated into clinical review templates and is used to communicate BR assessments to advisory committees. The Benefit-Risk Framework for new drugs identifies key decision factors, each with two components—Evidence and Uncertainties, along with Conclusions and Reasons. In the context of contraceptives, this typically encompasses:

• <u>Analysis of Condition:</u> This addresses the therapeutic context for the proposed indication, including the intended medical use and patient/user population, impacts, and public health implications. For contraceptives, this section highlights the negative consequences of unintended pregnancy.

• <u>Current Treatment Options</u>: This section outlines current FDA-approved treatments and the standard of care, including efficacy, safety, tolerability, and any limitations (e.g., subpopulations that are unresponsive or intolerant to treatment). The medical need for a new drug in terms of efficacy, safety, or tolerability is also assessed. For female contraceptive options, this list often includes a broad range of available options, including male condoms.

• <u>Benefit:</u> This assesses the clinical endpoints, detailing the nature of the effect (i.e., protection against pregnancy) and associated uncertainty (e.g., confidence interval, clinical importance), distribution of treatment effects (e.g., percent of users experiencing substantial benefit), and the time course and durability of effect.

• <u>Risk and Risk Management:</u> This evaluates observed adverse events or safety signals, assessing their clinical importance, including severity, likelihood of occurrence, reversibility, and impact on drug tolerability or adherence. It assesses

the level of certainty for a causal association, the potential impact of product quality issues, anticipated post-marketing differences, the potential for misuse or accidental exposure, and the likely effectiveness of proposed risk management approaches.

For medical devices, the FDA's Center for Devices and Radiological Health (CDRH) also employs a structured approach for benefit/risk analysis of premarket approval (PMA) applications and De Novo classifications, guided by similar factors. ¹⁹⁴ Their assessment includes the following sections:

• Assessment of Benefits: This evaluates the extent of the probable benefit(s) by considering the type of benefit (e.g., pregnancy prevention), the magnitude of the benefit (e.g. contraceptive efficacy observed in pivotal studies), the probability of the patient experiencing a benefit, and the duration of effect (how long the benefit lasts).

• <u>Assessment of Risks:</u> This examines the extent of the probable risk(s)/harm(s), including the severity, types, number, and rates of harmful events (serious, non-serious, procedure-related complications), the probability of a harmful event, and the duration of harmful events.

• <u>Additional Factors:</u> This section is designed to capture other relevant considerations that should be included in the assessment, such as:

O Uncertainty (e.g., study design, generalizability of results, repeatability)

O Patient contribute and antique transported outcomes (PROs)

• Patient-centric assessments and patient-reported outcomes (PROs)

Patient perspectives

• Availability of alternative treatments (including non-device therapies)

Risk mitigation (e.g., labeling, specialized training)
Postmarket data needs

• Novel technology (whether the device addresses unmet medical need).

The Patient Perspectives category, distinct from clinical assessments, is a unique feature of the CDRH benefit-risk evaluation, with guidance stating, "FDA recognizes that patient perspectives on benefits and risks may reveal reasonable patients who are willing to tolerate a very high level of risk to achieve a probable benefit, especially if that benefit results in an improvement in quality of life." Additionally, the guidance emphasizes the importance of capturing a comprehensive understanding of the patient perspective, stating, "Rather than one-sided evaluations, patient preference assessments should take into account both the patient's willingness and unwillingness to use a device or tolerate risk in exchange for probable benefit, and/or evaluate how patients view tradeoffs between benefits and risks of various treatment options." ¹⁹⁴

In Europe, the EMA initiated its "Benefit-Risk Methodology" project in 2009 to develop a more structured approach, emphasizing transparency and consistency. Their primary recommendation is a two-level evaluation: a <u>qualitative</u> approach, which is sufficient for most cases, primarily utilizing the 8-step generic decision-making guide addressing the Problem, Objectives, Alternatives, Consequences, Trade-off, Uncertainty, Risk tolerance, and Linked decisions (PrOACT-URL) model, similar to the analysis framework used by the FDA's CDER and CBER. 195 If the qualitative analysis is insufficient, the EMA then applies a <u>quantitative</u> approach using Multi-Criteria Decision Analysis (MCDA) for more complex or "marginal" situations.

Shared risk and responsibility

Male contraceptives present unique challenges in assessing benefit and risk because the primary, direct benefit of preventing pregnancy occurs in the female partner, rather than directly in the male user. The concept of benefiting someone other than the user is rare for drug and device approvals. There are, however, parallels to vaccine usage, where the benefit to public health, or even family members, often outweighs the benefit to the individual. For example, pertussis vaccines are encouraged for parents and close caregivers to protect infant health, through a "cocooning" strategy. Although the direct benefit to the adult receiving the booster may be small, the rationale for immunization is compelling, as the direct benefit is realized in a family member. Finally, when assessing risk, it is crucial to recognize that choosing not to use a male contraceptive does not eliminate risk for men; rather, it increases the likelihood of fathering an unintended pregnancy and enduring the associated potentially deleterious consequences.

The concept of "shared risk and responsibility" has been introduced as an ethical framework for considering the benefit-risk of male contraceptives. 197 This framework acknowledges that contraception is relational and defines risk as the sum of risks to both members of a sexual dyad associated with contraceptive use by either partner, compared to the risks of unintended pregnancy for the couple as a whole. This contrasts with the traditional "individual framework," which focuses solely on the benefit and risk to one individual. An example provided by Campelia et al. proposes that if a female combined oral contraceptive (F-COC) has a risk of 7.5 deaths per million user-years due to thromboembolism, applying the "shared risk" paradigm means the couple accrues this risk. 197 If a male contraceptive had a lower risk of death, e.g., 1 death per ten million user-years, the overall "shared risk" for the couple would be significantly reduced, making the male contraceptive strongly favored from this perspective. This framework allows developers to reframe the risk assessment for male contraceptives, justifying medical risks

to the male user while reducing overall risk to the couple. It also aims to alleviate gender-based disparities in risk and responsibility related to family planning.

Lessons from the regulatory approval of female contraceptives

26922693

26942695

26962697

26982699

2700

2701

2702

2703

27042705

2706

2707

27082709

27102711

2712

2713

27142715

Regulatory precedent for female contraceptives demonstrates a willingness by the FDA to approve products despite known risks, limitations in use, and sub-optimal efficacy, to expand contraceptive options (and forms) and support broader efforts to reduce unplanned pregnancy. Female combined hormonal contraceptives (CHC) carry a boxed warning for cardiovascular risk, yet this has not prevented regulators from continuing to approve new female methods. Recent approvals, utilizing the benefit-risk framework described above, offer insight into regulatory considerations. For example, *Nextstellis* (*drospirenone* and *estetrol* tablets) was approved in 2021.¹⁹⁸ Its benefit-risk analysis considered the significant risks and consequences of unintended pregnancy in healthy reproductive-age women, balancing them against the risks of hormonal contraception, including serious thromboembolic adverse reactions. The approval acknowledged that the risk of unintended pregnancy provides justification for CHC approval. Nextstellis had an acceptable overall Pearl Index (PI) of 2.65 (with an upper bound of the 95% confidence interval at 3.88). Still, its PI exceeded 5 for women with increasing BMI, suggesting it may be less effective than other currently approved oral contraceptives. As justification, the Analysis of Condition stated, "Unintended pregnancy remains a significant reproductive health problem for females and their families in the United States due in part to compliance, access and affordability," concluding that, "Additional modifications of contraceptives in regard to ease of use, effectiveness and safety are warranted to continue to reduce the unintended pregnancy rate."

271727182719

27202721

27222723

2724

2725

2716

Twirla, a transdermal hormonal contraceptive patch for females, received approval from the FDA in 2020.¹⁹⁹ For women with a BMI between 25 and 30, the PI was 5.7 (95% CI: 3.0–8.4); however, the product was approved, presumably due to the limited number of transdermal or weekly options available. In the obese (BMI \geq 30) subpopulation analysis, a Pearl Index of 8.64 (95% CI = 5.79, 11.50) was observed, resulting in an indication only for women with a BMI less than 30. The benefit-risk analysis stated that, for the obese sub-population, "the lower bound exceeded the upper bound of every previously approved CHC."

272627272728

2729

2730

2731

Phexxi, a non-hormonal contraceptive vaginal gel, was approved by the FDA in 2019, following a pivotal 7-cycle trial. The cumulative pregnancy rate was 13.7% with a 95% CI of (10.0%, 17.5%) based on 101 on-treatment pregnancies. The Pearl Index was calculated as a required secondary efficacy endpoint. Based on 101 on-treatment

pregnancies over seven cycles (with exposure counted in days), the Pearl Index was 27.5 (95% CI: 22.4%, 33.5%). The approval package states that, "These effectiveness results are in the same range as nonoxynol-9 spermicidal Tier 3 products on the market and, therefore, are acceptable. Although the contraceptive benefit of Phexxi in terms of pregnancy rates is significantly less than that of hormonal methods, it does provide another contraceptive option with less side effects. The safety profile is consistent with other topically applied vaginal products. The vaginal application just prior to intercourse allows for on-demand use, which may benefit women with infrequent intercourse or if concomitant use with a barrier method is being considered." The benefit-risk analysis subsequently states that "Non-hormonal products offer contraceptive options for women who cannot tolerate hormone therapies or have a history of health problems that contraindicate hormone use."

These examples indicate a tolerance of risk and acceptance of a range of effectiveness in female contraceptives by the FDA, seemingly driven by the significant need for pregnancy prevention and the provision of diverse options.

Conversely, the EMA has centrally approved only a single contraceptive in the last decade. Drovelis (the same drospirenone and estetrol product as Nextstellis, marketed under a different name) was approved in 2021.²⁰¹ Although a trial including US-based sites observed lower efficacy, with the European Public Assessment Report (EPAR) highlighting the failure to meet the expectations of hormonal contraceptives, it was ultimately approved based on adequate efficacy in the European pivotal trial, which resulted in a PI of 0.44. The EPAR states, "The requirement for precision of the PI (2.42, 95% CI: 1.58, 3.54) was not met in accordance with the EMA Guideline on Steroid Contraceptives, since the difference between the upper limit of the corresponding 2-sided 95% CI for the Pearl Index and the point estimate was > 1."

Lessons from the regulatory approval of products for men

Given that no male contraceptive drugs have yet been approved, we must look elsewhere for indications of the regulatory perspective on drugs to treat non-lifethreatening conditions in men. The FDA has approved numerous drugs for men that could be classified as "quality of life" products, such as those to treat male pattern hair loss and erectile dysfunction (ED). The approval of ED drugs like sildenafil citrate (Viagra), tadalafil (Cialis), and vardenafil (Levitra) predates the usage of the current riskbenefit framework for assessment. These products, all phosphodiesterase type 5 (PDE5) inhibitors, are also authorized by the EMA. The Scientific Discussion of the original EMA authorization documents states, "Although erectile dysfunction is

regarded as a benign disorder, it has a medical and social impact due to its high prevalence, costs, and implications for quality of life for many men (and their partners)."²⁰⁵ In addition to the primary efficacy endpoints related explicitly to erectile function, secondary endpoints utilized a range of quality of life measures, including the Fugl-Meyer Quality of Life Questionnaire and the Centre for Epidemiological Studies Depression Scale (CES-D) Questionnaire. PDE5 inhibitors have several accepted class effects, including headache, flushing, nasal congestion, and dizziness. The labeling for Levitra also warns of rare but serious side effects, including vision loss and sudden hearing loss.

There are a number of testosterone-replacement products, in a range of forms, currently approved by the FDA and authorized by the EMA. Widespread and increasing use of testosterone to address symptoms of low endogenous testosterone is considered offlabel, though clearly recognized by regulators. ^{206,207} For example, Xyosted was approved by the FDA in 2018 as a subcutaneous injection form of testosterone enanthate. ²⁰⁸ The review states, "TRT [testosterone replacement therapy] is the current standard of care for hypogonadal men with primary or secondary hypogonadism due to conditions associated with a genetic or structural disorder. Nonetheless, despite a drug class Limitation of Use (LOU) in approved product labeling, TRT products are often prescribed to older men with "low T" for the treatment of "age-related hypogonadism." There are a host of FDAapproved TRT products available, including a variety of formulation types. Xyosted would be another therapeutic option in the armamentarium for TRT." Regulator concerns about depression and suicide risk, as well as increases in blood pressure, potentially leading to major adverse cardiac events, were primarily handled via labeling, with a boxed warning detailing the hypertensive effects (as well as additional postmarketing work to assess patient understanding of the warnings contained in the medication guide).

Finasteride, initially approved by the FDA as Proscar, was approved in 1997 at a lower 1 mg dose under the name Propecia for the treatment of male pattern baldness. 209 Though it demonstrated cosmetic improvements in hair growth, the FDA later required the addition of a warning on the package insert stating "Increased Risk of High-Grade Prostate Cancer with 5α -Reductase Inhibitors." This product is also approved in the EU, but a recent review by the EMA has identified an increased risk of suicidal ideation. 210 The EMA states, "Most cases of suicidal ideation were reported in people using 1 mg finasteride tablets, which are used to treat androgenetic alopecia (hair loss due to male hormones). A warning about mood changes, including depression, depressed mood, and suicidal ideation, is already included in the product information for finasteride medicines. Patients who experience mood changes should seek medical advice and, if taking

finasteride 1 mg, should also stop treatment. The product information for finasteride 1 mg tablets will now also alert patients about the need to seek medical advice if they experience problems with sexual function (such as decreased sex drive or erectile dysfunction), which are known side effects of the medicine and may contribute to mood changes."

Overall, regulatory precedent suggests a tolerance for rare but serious AEs in products that support improved quality of life for men, including appearance, vitality, and sexual function, if these risks can be clearly communicated and adequately understood by the end-user.

Patient experience data

Both the EMA and FDA are placing a growing emphasis on patient-based drug development and integrating the patient perspective into benefit-risk evaluations, recognizing patients as both experts in their own experiences and the ultimate stakeholders in treatment outcomes. Per the EMA, "Patients have valuable insights and perspectives from living with a condition and its treatment. This includes symptoms, natural history, quality of life, unmet needs, which outcomes are important, and preferences for future treatments. Input from patients, as users of medicines, can inform medicine development, enhance regulatory decision making, and result in more patient-relevant outcomes."²¹¹

Patient Experience Data (PED) encompasses information collected from a wide variety of sources, including patients, family members, and patient advocacy organizations, to detail unmet needs, experience with products, and user preferences. These types of data can be critical in a benefit-risk assessment, as they help identify the potential benefits or features that are most meaningful to users and evaluate the acceptability of risk trade-offs and uncertainty. PED includes:

 • <u>Patient-Reported Outcomes (PROs)</u>: Direct measures of how patients feel and function, and key components of patient-focused outcome measurement approaches in clinical trials. Identification and selection of PROs worthy of evaluation in male contraceptive trials may be challenging, given the preventive nature of the products. In female contraceptive trials, the most common PROs assessed are satisfaction (also applicable to male methods) and side effects such as bleeding/spotting.²¹²

• <u>Patient Preference Information (PPI)</u>: Captures explicitly the value patients place on important attributes (benefits and risks) of a medical product. Well-designed PPI studies can elicit which attributes are important to patients, their relative importance, and the trade-offs patients are willing to make between benefits and

risks. PPI is considered to be particularly valuable when significant risks or uncertainty exist, when patient views vary considerably within a population, or when patient views are expected to differ from those of healthcare professionals.

The FDA's Center for Devices and Radiological Health (CDRH) was a pioneer in incorporating quantitative patient-preference data, using it to inform regulatory review and approval decisions for medical devices as early as 2012. CDRH revised its guidance in 2016 to include PPI as a factor explicitly. Additionally, they provide a detailed guidance on how PPI can be utilized in device approvals. Unfortunately, the formal inclusion of these data in the analysis of benefit-risk for drugs remains challenging. The FDA has generated four methodology guidances for assessing and submitting patient experience data, several of which remain open for public comment.

Summary

The approval of male contraceptives will require a nuanced and modernized approach to benefit-risk analysis—one that moves beyond the traditional, individualfocused framework to embrace a model of shared risk and responsibility. Such a paradigm recognizes the relational nature of contraception and addresses longstanding gender disparities in family planning. New male methods offer the potential to expand contraceptive choice and better align with users' individual health needs, lifestyle preferences, and cultural values. Regulatory precedent for drugs that address non-lifethreatening conditions in men—such as erectile dysfunction, hair loss, and testosterone deficiency—demonstrates a willingness to approve products with recognized risks, provided those risks are clearly conveyed and well-understood by users. The committee emphasizes the importance of balanced risk tolerance, supported by clear, comprehensive, and patient-friendly safety information in the labeling, to enable individuals to make informed decisions based on their own circumstances. The FDA has already shown flexibility in the approval of female contraceptives by accepting a range of effectiveness and risk profiles in service of broader public health goals. The committee hopes that this same spirit of regulatory pragmatism—centered on unmet need and user perspective will extend to male contraceptive products.

While many aspects of male contraceptive development remain uncertain—particularly how regulators will approach benefit-risk—there was unanimous agreement that early and sustained engagement with end-users is both feasible and essential. These efforts will inform product development, assess acceptability, and lay the groundwork for future regulatory decisions.

Recommendation: Male contraceptive researchers and developers should prioritize the collection and use of patient experience data throughout the development process and consider how this can be used to support regulatory benefit-risk assessments.

Given the novel nature of male contraceptives beyond condoms, public perceptions about their acceptability, required attributes, and likely adherence vary widely. Contrary to the common assumption that men will only consider a contraceptive method if it is completely free of side effects, emerging evidence suggests otherwise. Analysis of data from a trial of an injectable hormonal male contraception found that while the frequencies of side effects were comparable to female contraceptive trials, the discontinuation rates were lower for men.²¹⁷ In a large, multi-country study by Kaur et al., over 18,000 men were surveyed using a discrete choice experiment that assessed preferences across 11 product attributes, including impact on sex drive, testicular size, ejaculate volume, energy, weight, and mood. The analysis revealed that product form (e.g., pill, transdermal gel, etc.) and timing of administration (e.g., on-demand, daily, etc.) were by far the strongest drivers of men's decision-making – 2 to 4 times more influential than any potential side effect across all countries studied.²⁸ As such, the initial analysis focused on likelihood of uptake by potential product form and time of use, i.e., on-demand pill, daily pill, ondemand transdermal gel, daily transdermal gel or long-acting vasocclusive hydrogel. However, subsequent analyses are in process to further investigate the nuanced trade-offs men are willing to make regarding different side effects (unpublished, Kretschmer, 2025).

• The committee had the opportunity to engage in discussions with men and couples who had participated in a Phase 2 study of the male hormonal contraceptive gel combining Nestorone (segesterone acetate) with testosterone (NES/T).¹⁵⁷ These participants offered a range of compelling perspectives. Many were young couples who wished to delay having children for several years. The men often expressed a desire to begin shouldering the burden of contraception. Many had seen their wives try multiple female contraceptive options yet discontinue them due to intolerable side effects. This implies that in the model of shared risk and responsibility, new male contraception methods may be a second- or third-line approach for some couples, where men might be willing to try a product because female products have failed their partner. Formal end-of-

study surveys were collected for this study but have not yet been published.

292929302931

2932

2933

29342935

29362937

2938

2939

2940

2941

2942

29432944

29452946

29472948

2928

Given the absence of precedent for the development and use of male contraceptive drug products, it is essential that developers and researchers proactively characterize user preferences and expectations across a broad spectrum of end-users. These insights can be utilized to establish tolerability ranges—acknowledging that acceptable side effects and riskbenefit trade-offs will differ across individuals, cultures, life stages, and partner dynamics—rather than aiming for a single universal threshold. This includes early and ongoing engagement with potential users through structured approaches such as focus groups and trial-integrated surveys conducted both prior to and following study participation. In parallel, developers should collect formal patient experience data, including patient-reported outcomes (PROs) and patient preference information (PPI). These data will be critical for articulating the public health need and user acceptability to regulatory authorities. Early dialogue with regulators regarding the design and intended use of these data is strongly encouraged to increase the likelihood of their influence on benefit-risk evaluation.

References

2949

- 2950 1. Bernstein, A. & Jones, K. M. The Economic Effects of Contraceptive Access: A Review of the Evidence Key Findings from the Literature.
- https://policycommons.net/artifacts/4825153/the-economic-effects-of-contraceptive-access/5661869/ (2019).
- 2954 2. Sonfield, A., Hasstedt, K., Kavanaugh, M. L. & Anderson, R. *The Social and Economic Benefits of Women's Ability To Determine Whether and When to Have Children*.
- https://www.guttmacher.org/report/social-and-economic-benefits-womens-abilitydetermine-whether-and-when-have-children (2013).
- 2958 3. Anderson, D. J. & Johnston, D. S. A brief history and future prospects of contraception. *Science* **380**, 154–158 (2023).
- 4. Bearak, J., Popinchalk, A., Alkema, L. & Sedgh, G. Global, regional, and subregional trends in unintended pregnancy and its outcomes from 1990 to 2014: estimates from a Bayesian hierarchical model. *Lancet Glob. Health* **6**, e380–e389 (2018).
- 5. Guttmacher Institute. *Unintended Pregnancy and Abortion Worldwide*.
 https://www.guttmacher.org/fact-sheet/induced-abortion-worldwide (2022).
- 6. Finer, L. B. & Sonfield, A. The evidence mounts on the benefits of preventing unintended pregnancy. *Contraception* **87**, 126–127 (2013).
- 7. Trussell, J. *et al.* Burden of unintended pregnancy in the United States: potential savings with increased use of long-acting reversible contraception. *Contraception* **87**, 154–161 (2013).
- 8. Westhoff, C. L. *et al.* Oral contraceptive discontinuation: do side effects matter? *Am. J. Obstet. Gynecol.* 196, 412.e1-412.e7 (2007).
- 9. Simmons, R. G. *et al.* Predictors of contraceptive switching and discontinuation
- 2973 within the first 6 months of use among Highly Effective Reversible Contraceptive
- 2974 Initiative Salt Lake study participants. *Am. J. Obstet. Gynecol.* **220**, 376.e1-376.e12 2975 (2019).
- 2976 10. Dorman, E. *et al.* Modeling the impact of novel male contraceptive methods on reductions in unintended pregnancies in Nigeria, South Africa, and the United States. *Contraception* **97**, 62–69 (2018).
- 2979 11. Guttmacher Institute. Contraceptive Effectiveness in the United States.
- 2980 https://www.guttmacher.org/fact-sheet/contraceptive-effectiveness-united-states (2020).
- 2982 12. Patel, A. P. & Smith, R. P. Vasectomy reversal: a clinical update. *Asian J. Androl.* 2983 **18**, 365–371 (2016).
- 2984 13. Amory, J. K. Male Contraception. *Semin. Reprod. Med.* (2023) doi:10.1055/s-0043-2985 1777757.
- 2986 14. Heckel, N. J. Production of Oligospermia in a Man by the Use of Testosterone 2987 Propionate. *Proc. Soc. Exp. Biol. Med.* **40**, 658–659 (1939).
- 2988 15. Wang, C., Meriggiola, M. C., Behre, H. M. & Page, S. T. Hormonal male contraception. *Andrology* **12**, 1551–1557 (2024).

- 2990 16. Wang, C., Barratt, C. L. R. & Blithe, D. L. Contraceptive efficacy: Determining the threshold for effective suppression based on sperm concentration, motility, and
- 2992 morphology. *Andrology* (2024) doi:10.1111/andr.13701.
- 2993 17. Guzick, D. S. *et al.* Sperm Morphology, Motility, and Concentration in Fertile and Infertile Men. *N. Engl. J. Med.* **345**, 1388–1393 (2001).
- 2995 18. Myer, K. Clinical Evaluation of Daily Application of Nestorone® (NES) and Testosterone (T) Combination Gel for Male Contraception.
- 2997 https://clinicaltrials.gov/study/NCT03452111 (2025).
- 2998 19. Health Decisions. *Injectable DMAU for Male Contraception: Safety and Tolerability,* 2999 *Pharmacokinetics and Pharmacodynamics of Single IM or SC DMAU Injection Dose*
- 3000 Escalation Study in Healthy Male Volunteers.
- 3001 https://clinicaltrials.gov/study/NCT02927210 (2021).
- 3002 20. Page, S. T. Synthetic Androgens for Male Contraception. *Contraception* 110735 3003 (2024) doi:10.1016/j.contraception.2024.110735.
- 3004 21. Johnston, D. S. & Goldberg, E. Preclinical contraceptive development for men and women. *Biol. Reprod.* (2020) doi:10.1093/biolre/ioaa076.
- 3006 22. Garcia, T. X. & Matzuk, M. M. Novel Genes of the Male Reproductive System: 3007 Potential Roles in Male Reproduction and as Non-hormonal Male Contraceptive 3008 Targets. *Mol. Reprod. Dev.* **91**, e70000 (2024).
- 3009 23. Yan, W. & Amory, J. K. Emerging approaches to male contraception. *Andrology* 3010 (2024) doi:10.1111/andr.13652.
- 3011 24. Nickels, L. & Yan, W. Nonhormonal Male Contraceptive Development-Strategies for Progress. *Pharmacol. Rev.* **76**, 37–48 (2023).
- 3013 25. Joint Economic Committee of the 117th Congress of the United States. *The* 2022 3014 *Joint Economic Report*. https://www.jec.senate.gov/public/index.cfm/annual-
- 3015 reports / (2022).
- 3016 26. Heinemann, K., Saad, F., Wiesemes, M., White, S. & Heinemann, L. Attitudes toward male fertility control: results of a multinational survey on four continents. *Hum. Reprod.* **20**, 549–556 (2005).
- 3019 27. Glasier, A. F. *et al.* Would women trust their partners to use a male pill? *Hum.* 3020 *Reprod.* **15**, 646–649 (2000).
- 3021 28. Kaur, J., Rohini, D. V., Chang, L., Gugliotti, A. & Kretschmer, S. Assessment of 3022 demand for male contraceptives: A multi-country study. *Andrology* (2024) 3023 doi:10.1111/andr.13726.
- 3024 29. Dorman, E. & Bishai, D. Demand for male contraception. *Expert Rev. Pharmacoecon. Outcomes Res.* **12**, 605–613 (2012).
- 3026 30. Pelzman, D., Honig, S. & Sandlow, J. Comparative review of vasectomy guidelines and novel vasal occlusion techniques. *Andrology* (2024) doi:10.1111/andr.13665.
- 3029 31. International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (ICH). *Guidance for Industry M3(R2) Nonclinical*

- 3031 *Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals.* https://www.ich.org/page/multidisciplinary-guidelines (2009).
- 3033 32. Li, S. & Winuthayanon, W. Collection of Post-mating Semen from the Female Reproductive Tract and Measurement of Semen Liquefaction in Mice. *J. Vis. Exp.* 3035 *JoVE* 56670 (2017) doi:10.3791/56670.
- 3036 33. Oakberg, E. F. Duration of spermatogenesis in the mouse and timing of stages of the cycle of the seminiferous epithelium. *Am. J. Anat.* **99**, 507–516 (1956).
- 3038 34. Soares, J. M., Avelar, G. F. & França, L. R. The seminiferous epithelium cycle and its duration in different breeds of dog (Canis familiaris). *J. Anat.* **215**, 462–471 (2009).
- 3040 35. Gould, K. G. & Mann, D. R. Comparison of Electrostimulation Methods for Semen Recovery in the Rhesus Monkey (*Macaca mulatto*). *J. Med. Primatol.* **17**, 95–103 (1988).
- 3043 36. Schneiders, A., Sonksen, J. & Hodges, J. k. Penile vibratory stimulation in the marmoset monkey: a practical alternative to electro-ejaculation, yielding ejaculates of enhanced quality. *J. Med. Primatol.* **33**, 98–104 (2004).
- 3046 37. Amann, R. P., Foote, R. H. & Naughton, C. K. Artificial Vagina for Rabbits. *J. Androl.* **25**, 184–185 (2004).
- 3048 38. Macpherson, J. W. & Penner, P. Canine reproduction: I. Reaction of animals to collection of semen and insemination procedures. *Can. J. Comp. Med. Vet. Sci.* **31**, 62–3050 64 (1967).
- 3051 39. Brueschke, E. E. *et al.* Development of a reversible vas deferens occlusive device. 3052 I. Anatomical size of the human and dog vas deferens. *Fertil. Steril.* **25**, 659–672 (1974).
- 3053 40. Ruetten, H. & Vezina, C. M. Chapter Two Relevance of dog as an animal model for urologic diseases. in *Progress in Molecular Biology and Translational Science* (ed. Tao, Y.-X.) vol. 189 35–65 (Academic Press, 2022).
- 3056 41. Costin, G.-E., Raabe, H. A., Priston, R., Evans, E. & Curren, R. D. Vaginal irritation models: the current status of available alternative and in vitro tests. *Altern. Lab. Anim. ATLA* **39**, 317–337 (2011).
- 3059 42. Marco-Jiménez, F., Viudes-de-Castro, M. P. & Vicente, J. S. Why choose the rabbit to work in reproductive technology? *Reprod. Domest. Anim.* **59**, e14640 (2024).
- 3061 43. Stricker-Krongrad, A., Shoemake, C. R., Liu, J., Brocksmith, D. & Bouchard, G. The importance of minipigs in dermal safety assessment: an overview. *Cutan. Ocul. Toxicol.* **36**, 105–113 (2017).
- 3064 44. Lunney, J. K. *et al.* Importance of the pig as a human biomedical model. *Sci.* 3065 *Transl. Med.* **13**, eabd5758 (2021).
- 3066 45. Viudes-de-Castro, M. P. & Vicente, J. S. Effect of sperm count on the fertility and prolificity rates of meat rabbits. *Anim. Reprod. Sci.* **46**, 313–319 (1997).
- 3068 46. Rogers, J. H. *et al.* Restricted mating windows and thrombospondin 2 gene deletion improve the precision of parturition timing in mice†. *Biol. Reprod.* ioaf132 (2025) doi:10.1093/biolre/ioaf132.
- 3071 47. (PDF) Lactobacilli Dominance and Vaginal pH: Why Is the Human Vaginal 3072 Microbiome Unique?

- https://www.researchgate.net/publication/311578386_Lactobacilli_Dominance_and _Vaginal_pH_Why_Is_the_Human_Vaginal_Microbiome_Unique.
- 3075 48. Lukefahr, S. D., McNitt, J. I., Cheeke, P. R. & Patton, N. M. Rabbit reproduction. 3076 in *Rabbit production* 165–181 (CABI, Wallingford, 2022).
- 3077 doi:10.1079/9781789249781.0011.
- 3078 49. Mousa-Balabel, T. M. Using light and melatonin in the management of New Zealand White rabbits. *Open Vet. J.* **1**, 1–6 (2011).
- 3080 50. McLean, J. H., Dupeire, W. A. & Elder, S. T. Strain differences in the mating behavior of Sprague-Dawley, Long-Evans, and Wistar male rats. *Psychon. Sci.* **29**, 175–3082 176 (1972).
- Darszon, A., Nishigaki, T., López-González, I., Visconti, P. E. & Treviño, C. L.
 Differences and Similarities: The Richness of Comparative Sperm Physiology.
 Physiology 35, 196–208 (2020).
- 3086 52. Morphological diversity of sperm: A mini review PMC. 3087 https://pmc.ncbi.nlm.nih.gov/articles/PMC4071627/.
- 3088 53. Namdari, R. *et al.* Species selection for nonclinical safety assessment of drug candidates: Examples of current industry practice. *Regul. Toxicol. Pharmacol.* **126**, 105029 (2021).
- 3091 54. Prior, H. *et al.* Opportunities for use of one species for longer-term toxicology testing during drug development: A cross-industry evaluation. *Regul. Toxicol.* 3093 *Pharmacol.* **113**, 104624 (2020).
- 3094 55. NC3Rs. National Centre for the Replacement, Refinement & Reduction of Animals in Research https://nc3rs.org.uk/.
- 3096 56. Commissioner, O. of the. FDA Announces Plan to Phase Out Animal Testing Requirement for Monoclonal Antibodies and Other Drugs. *FDA*
- https://www.fda.gov/news-events/press-announcements/fda-announces-planphase-out-animal-testing-requirement-monoclonal-antibodies-and-other-drugs (2025).
- 3101 57. How Does the NIH Initiative to Prioritize Human-Based Research Affect Research Proposing the Use of Laboratory Animals? | Grants & Funding.
- 3103 https://grants.nih.gov/news-events/nih-extramural-nexus-news/2025/07/how-
- does-the-nih-initiative-to-prioritize-human-based-research-affect-research-proposingthe-use-of-laboratory-animals.
- 3106 58. NIH to prioritize human-based research technologies | National Institutes of Health (NIH). https://www.nih.gov/news-events/news-releases/nih-prioritize-human-based-research-technologies.
- 3109 59. Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010 on the Protection of Animals Used for Scientific Purposes. (2019).
- 3111 60. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3112 Testicular Toxicity: Evaluation During Drug Development.
- 3113 https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/testicular-toxicity-evaluation-during-drug-development (2020).

- 3115 61. Committee for Medicinal Products for Human Use, European Medicines Agency
- 3116 (EMA). ICH S5 (R3) Guideline on Detection of Reproductive and Developmental Toxicity for
- 3117 Human Pharmaceuticals. https://www.ema.europa.eu/en/ich-s5-r3-guideline-
- detection-reproductive-developmental-toxicity-human-pharmaceuticals-scientificguideline (2020).
- 3120 62. Brannen, K. C., Chapin, R. E., Jacobs, A. C. & Green, M. L. Alternative Models of
- Developmental and Reproductive Toxicity in Pharmaceutical Risk Assessment and
- 3122 the 3Rs. *ILAR J.* **57**, 144–156 (2016).
- 3123 63. Weiner, A. M. J. *et al.* Validation of a zebrafish developmental defects assay as a
- qualified alternative test for its regulatory use following the ICH S5(R3) guideline.
- 3125 Reprod. Toxicol. **123**, 108513 (2024).
- 3126 64. Ghofrani, H. A., Osterloh, I. H. & Grimminger, F. Sildenafil: from angina to
- erectile dysfunction to pulmonary hypertension and beyond. *Nat. Rev. Drug Discov.* **5**, 689–702 (2006).
- 3129 65. Drug Approval Package: Revatio.
- $3130 \qquad https://www.accessdata.fda.gov/drugsatfda_docs/nda/2005/021845s000_RevatioT$
- 3131 OC.cfm.
- 3132 66. Lal, R. Abbreviated Approval Pathways for Drug Product: 505(b)(2) or ANDA?
- 3133 https://www.fda.gov/drugs/cder-small-business-industry-assistance-
- sbia/abbreviated-approval-pathways-drug-product-505b2-or-anda (2024).
- 3135 67. European Medicines Agency (EMA). Quality Review of Documents General
- 3136 Principles Regarding the Summary-of-Product-Characteristics Information for a Generic /
- 3137 *Hybrid | Biosimilar Product*. https://www.ema.europa.eu/en/human-regulatory-
- 3138 overview/marketing-authorisation/generic-hybrid-medicines (2018).
- 3139 68. Drug Approval Package: Annovera (segesterone acetate and ethinyl estradiol).
- 3140 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2018/209627Orig1s000TOC .cfm.
- 3142 69. Center for Drug Evaluation and Research, US Food and Drug Administration.
- Nonclinical Safety Evaluation of Reformulated Drug Products and Products Intended for
- Administration by an Alternate Route | Guidance for Industry and Review Staff.
- 3145 https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/nonclinical-safety-evaluation-reformulated-drug-products-and-
- 3147 products-intended-administration (2015).
- 3148 70. ReframeDB. https://reframedb.org/.
- 3149 71. Gruber, F. S., johnston, Z. C., Barratt, C. L. & Andrews, P. D. A phenotypic
- 3150 screening platform utilising human spermatozoa identifies compounds with
- 3151 contraceptive activity. *eLife* **9**, e51739 (2020).
- 3152 72. Barratt, C. L., Andrews, P. & Gruber, F. S. Male Contraceptive Screen assay data
- and protocol | A00252. Reframedb.
- 3154 73. Barratt, C. L., Andrews, P. & Gruber, F. S. Male Contraceptive Screen assay data
- and protocol | A00326. reframeDB.
- 3156 74. Denton, J. SLO3 inhibitors assay data and protocol | A00429. reframeDB.

- 3157 75. Johnston, Z. C. *et al.* High-throughput phenotypic screening of the human spermatozoon. *Reproduction* **163**, R1–R9 (2022).
- 3159 76. Baell, J. & Walters, M. A. Chemistry: Chemical con artists foil drug discovery. 3160 *Nature* **513**, 481–483 (2014).
- 3161 77. Capuzzi, S. J., Muratov, E. N. & Tropsha, A. Phantom PAINS: Problems with the Utility of Alerts for Pan-Assay INterference CompoundS. *J. Chem. Inf. Model.* **57**, 417–3163 427 (2017).
- 3164 78. Wilcox, A. J., Weinberg, C. R. & Baird, D. D. Timing of Sexual Intercourse in Relation to Ovulation Effects on the Probability of Conception, Survival of the Pregnancy, and Sex of the Baby. *N. Engl. J. Med.* **333**, 1517–1521 (1995).
- 79. Kunz, G., Beil, D., Deininger, H., Wildt, L. & Leyendecker, G. The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. *Hum. Reprod.* **11**, 627–632 (1996).
- 3171 80. Wildt, L., Kissler, S., Licht, P. & Becker, W. Sperm transport in the human female genital tract and its modulation by oxytocin as assessed by
- 3173 hysterosalpingoscintigraphy, hysterotonography, electrohysterography and Doppler sonography. *Hum. Reprod. Update* **4**, 655–666 (1998).
- 3175 81. Zervomanolakis, I. *et al.* Uterine mechanisms of ipsilateral directed spermatozoa transport: Evidence for a contribution of the utero-ovarian countercurrent system. *Eur. J. Obstet. Gynecol. Reprod. Biol.* **144**, S45–S49 (2009).
- 3178 82. Xie, X. *et al.* Recent advances in targeting the "undruggable" proteins: from drug discovery to clinical trials. *Signal Transduct. Target. Ther.* **8**, 1–71 (2023).
- 3180 83. Békés, M., Langley, D. R. & Crews, C. M. PROTAC targeted protein degraders: the past is prologue. *Nat. Rev. Drug Discov.* **21**, 181–200 (2022).
- 3182 84. Suarez, S. S. & Pacey, A. A. Sperm transport in the female reproductive tract. 3183 *Hum. Reprod. Update* **12**, 23–37 (2006).
- 3184 85. Sobrero, A. J. & MacLeod, J. The Immediate Postcoital Test. Fertil. Steril. 13, 184–3185 189 (1962).
- 3186 86. World Health Organization. *WHO Laboratory Manual for the Examination and Processing of Human Semen*. (World Health Organization, Geneva, 2021).
- 3188 87. Ludwig, M. *et al.* Tissue penetration of sparfloxacin in a rat model of experimentalEscherichia coli epididymitis. *Infection* **25**, 178–184 (1997).
- 3190 88. Cao, Y.-J. & Hendrix, C. Male Genital Tract Pharmacology: Developments in 3191 Quantitative Methods to Better Understand a Complex Peripheral Compartment. 3192 Clin. Pharmacol. Ther. 83, 401–412 (2008).
- 3193 89. Cao, Y.-J. *et al.* Noninvasive Quantitation of Drug Concentration in Prostate and Seminal Vesicles: Improvement and Validation With Desipramine and Aspirin. *J. Clin. Pharmacol.* **48**, 176–183 (2008).
- 3196 90. FDA-NIH Biomarker Working Group. *BEST (Biomarkers, EndpointS, and Other Tools) Resource.* (Food and Drug Administration (US), Silver Spring (MD), 2016).

- 3198 91. Strimbu, K. & Tavel, J. A. What are Biomarkers? *Curr. Opin. HIV AIDS* **5**, 463–466 3199 (2010).
- 3200 92. Center for Drug Evaluation and Research, US Food and Drug Administration.
- About Biomarkers and Qualification. https://www.fda.gov/drugs/biomarkerqualification-program/about-biomarkers-and-qualification (2021).
- 3203 93. Center for Drug Evaluation and Research, US Food and Drug Administration.
- Table of Surrogate Endpoints That Were the Basis of Drug Approval or Licensure.
- https://www.fda.gov/drugs/development-resources/table-surrogate-endpointswere-basis-drug-approval-or-licensure (2024).
- 3207 94. Amur, S. G. *et al.* Building a roadmap to biomarker qualification: challenges and opportunities. *Biomark. Med.* **9**, 1095–1105 (2015).
- 3209 95. Shahzad, M. & Stern, A. D. Participants in the FDA's Biomarker Qualification 3210 Program. *Clin. Pharmacol. Ther.* **118**, 80–84 (2025).
- 3211 96. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3212 Considerations for Discussion of a New Surrogate Endpoint(s) at a Type C PDUFA
- 3213 Meeting Request. https://www.fda.gov/media/115120 (2018).
- 3214 97. Keihani, S. *et al.* Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? *Hum. Reprod. Oxf. Engl.* **36**, 2121–2133 (2021).
- 3216 98. Sanyal, D., Arya, D., Nishi, K., Balasinor, N. & Singh, D. Clinical Utility of Sperm Function Tests in Predicting Male Fertility: A Systematic Review. *Reprod. Sci.*
- 3218 Thousand Oaks Calif **31**, 863–882 (2024).
- 3219 99. Agyeman, A. S. *et al.* US FDA public meeting: identification of concepts and terminology for multicomponent biomarkers. *Biomark. Med.* **17**, 523–531 (2023).
- 3221 100. Mathews, J. *et al.* Best practices for the development and fit-for-purpose validation of biomarker methods: a conference report. *AAPS Open* **8**, 2 (2022).
- 3223 101. Balbach, M. *et al.* On-demand male contraception via acute inhibition of soluble adenylyl cyclase. *Nat. Commun.* **14**, 637 (2023).
- 3225 102. Korthorst, R. A., Consten, D. & van Roijen, J. H. Clearance after vasectomy with a single semen sample containing < than 100 000 immotile sperm/mL: analysis of 1073 patients. *BJU Int.* **105**, 1572–1575 (2010).
- World Health Organization Task Force on Methods for the Regulation of Male
 Fertility. Contraceptive efficacy of testosterone-induced azoospermia and
- 3230 oligozoospermia in normal men. Fertil. Steril. 65, 821–829 (1996).
- 3231 104. Goodman, D. S. George Lyman Duff memorial lecture. Cholesterol revisited.
- 3232 Molecule, medicine, and media. *Arterioscler. Dallas Tex* **9**, 430–438 (1989).
- 3233 105. Thirumalai, A. & Page, S. T. Testosterone and male contraception. Curr. Opin.
- 3234 Endocrinol. Diabetes Obes. 10.1097/MED.000000000000880 (2024)
- 3235 doi:10.1097/MED.0000000000000880.
- 3236 106. Myer, K. Clinical Evaluation of Daily Application of Nestorone® (NES) and
- 3237 Testosterone (T) Combination Gel for Male Contraception.
- 3238 https://clinicaltrials.gov/study/NCT03452111 (2025).

- 3239 107. Sharma, R. S. et al. Phase-III Clinical Trial with an Intravasal Once Injectable
- Non-Hormonal Male Contraceptive-Reversible Inhibition of Sperm under Guidance (RISUG). *Androl.-Open Access* **12**, 1–7 (2023).
- 3242 108. Gu, Y. et al. Multicenter Contraceptive Efficacy Trial of Injectable Testosterone
- 3243 Undecanoate in Chinese Men. J. Clin. Endocrinol. Metab. 94, 1910–1915 (2009).
- 3244 109. ANZCTR Registration.
- https://anzctr.org.au/Trial/Registration/TrialReview.aspx?ACTRN=1262400145951 6.
- 3247 110. Behre, H. M. *et al.* Efficacy and Safety of an Injectable Combination Hormonal Contraceptive for Men. *J. Clin. Endocrinol. Metab.* **101**, 4779–4788 (2016).
- 3249 111. Overview of the R&D Tax Incentive. business.gov.au
- https://business.gov.au/grants-and-programs/research-and-development-tax-incentive/overview-of-rd-tax-incentive (2025).
- 3252 112. European Medicines Agency (EMA). Fees Payable to the European Medicines
- Agency: Fees, Charges and Remuneration for Assessment Procedures and Services Relating to Medicinal Products for Human Use. (2025).
- 3255 113. The Hyde Amendment: An Overview. https://www.congress.gov/crs-3256 product/IF12167.
- 3257 114. Salganicoff, A., Sobel, L., Gomez, I. & Published, A. R. *The Hyde Amendment and Coverage for Abortion Services Under Medicaid in the Post-Roe Era.*
- https://www.kff.org/womens-health-policy/issue-brief/the-hyde-amendment-andcoverage-for-abortion-services-under-medicaid-in-the-post-roe-era/ (2024).
- 3261 115. International Council for Harmonisation of Technical Requirements for
- Pharmaceuticals for Human Use (ICH). *Guideline E8(R1): General Considerations for Clinical Studies*. https://www.ich.org/page/efficacy-guidelines#8-1 (2021).
- 3264 116. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3265 Establishing Effectiveness and Safety for Hormonal Drug Products Intended to Prevent
- 3266 Pregnancy Guidance for Industry. https://www.fda.gov/regulatory-
- information/search-fda-guidance-documents/establishing-effectiveness-and-safetyhormonal-drug-products-intended-prevent-pregnancy-guidance (2020).
- 3269 117. Committee for Medicinal Products for Human Use, European Medicines Agency 3270 (EMA). Clinical Investigation of Steroid Contraceptives in Women Scientific Guideline.
- https://www.ema.europa.eu/en/clinical-investigation-steroid-contraceptiveswomen-scientific-guideline (2005).
- 3273 118. Center for Drug Evaluation and Research. Pediatric Drug Development: Regulatory
- 3274 Considerations Complying With the Pediatric Research Equity Act and Qualifying for
- 3275 Pediatric Exclusivity Under the Best Pharmaceuticals for Children Act.
- 3276 https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/pediatric-drug-development-regulatory-considerations-complyingpediatric-research-equity-act-and (2024).
- 3279 119. Center for Drug Evaluation and Research. Pediatric Drug Development Under the
- 3280 Pediatric Research Equity Act and the Best Pharmaceuticals for Children Act: Scientific

- 3281 Considerations. https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/pediatric-drug-development-under-pediatric-research-equity-act-and-
- 3283 best-pharmaceuticals-children-act (2024).
- 3284 120. European Medicines Agency (EMA). Paediatric investigation plans.
- 3285 https://www.ema.europa.eu/en/human-regulatory-overview/research-
- development/paediatric-medicines-research-development/paediatric-investigationplans (2015).
- 3288 121. Contraline, Inc. Open-Label, Dose Ranging, Multi-Centre, Prospective First in Human Study to Assess the Safety of the ADAM System.
- 3290 https://clinicaltrials.gov/study/NCT05134428 (2024).
- 3291 122. Ford, W. C. *et al.* Increasing paternal age is associated with delayed conception in a large population of fertile couples: evidence for declining fecundity in older men.
- The ALSPAC Study Team (Avon Longitudinal Study of Pregnancy and Childhood). Hum. Reprod. Oxf. Engl. 15, 1703–1708 (2000).
- 3295 123. Johnson, S. L., Dunleavy, J., Gemmell, N. J. & Nakagawa, S. Consistent age-3296 dependent declines in human semen quality: A systematic review and meta-analysis. 3297 *Ageing Res. Rev.* **19**, 22–33 (2015).
- 3298 124. Zhang, C., Yan, L. & Qiao, J. Effect of advanced parental age on pregnancy outcome and offspring health. *J. Assist. Reprod. Genet.* **39**, 1969–1986 (2022).
- 3300 125. Matthiesson, K. L. *et al.* Effects of Testosterone and Levonorgestrel Combined 3301 with a 5α -Reductase Inhibitor or Gonadotropin-Releasing Hormone Antagonist on 3302 Spermatogenesis and Intratesticular Steroid Levels in Normal Men. *J. Clin. Endocrinol.* 3303 *Metab.* **90**, 5647–5655 (2005).
- 3304 126. Matthiesson, K. L. *et al.* Novel Male Hormonal Contraceptive Combinations: The Hormonal and Spermatogenic Effects of Testosterone and Levonorgestrel Combined with a 5α -Reductase Inhibitor or Gonadotropin-Releasing Hormone Antagonist. *J. Clin. Endocrinol. Metab.* **90**, 91–97 (2005).
- 3308 127. Amory, J. K. *et al.* Design of an international male contraceptive efficacy trial using a self-administered daily transdermal gel containing testosterone and segesterone acetate (Nestorone). *Contraception* **124**, 110064 (2023).
- 3311 128. Keihani, S. *et al.* Semen parameter thresholds and time-to-conception in subfertile couples: how high is high enough? *Hum. Reprod.* **36**, 2121–2133 (2021).
- 3313 129. Amory, J. K. Standardized outcome measures for reporting results from male contraceptive efficacy trials. *Andrology* (2025) doi:10.1111/andr.70042.
- 3315 130. WHO. Family Planning: A Global Handbook for Providers (2022 Update).
- https://fphandbook.org/sites/default/files/WHO-JHU-FPHandbook-2022Ed-v221115a.pdf (2022).
- 3318 131. World Health Organization Task Force on Methods for the Regulation of Male
- Fertility. Contraceptive efficacy of testosterone-induced azoospermia and
- oligozoospermia in normal men. Fertil. Steril. 65, 821–829 (1996).

- 3321 132. Campbell, M. J. et al. Distribution of semen examination results 2020 A follow
- 3322 up of data collated for the WHO semen analysis manual 2010. *Andrology* **9**, 817–822 (2021).
- 3324 133. Sharlip, I. D. et al. Vasectomy Guideline American Urological Association.
- https://www.auanet.org/guidelines-and-quality/guidelines/vasectomy-guideline.
- 3326 134. Larsen, L. *et al.* Computer-assisted semen analysis parameters as predictors for fertility of men from the general population. *Hum. Reprod.* **15**, 1562–1567 (2000).
- 3328 135. Schlegel, P. N. *et al.* Diagnosis and Treatment of Infertility in Men: AUA/ASRM Guideline Part I. *J. Urol.* (2021) doi:10.1097/JU.0000000000001521.
- 3330 136. Keel, B. A. Within- and between-subject variation in semen parameters in infertile men and normal semen donors. *Fertil. Steril.* **85**, 128–134 (2006).
- 3332 137. Aznavour, Y. *et al.* Semen parameter variability among users of at-home sperm testing kits. *BMC Urol.* **22**, 184 (2022).
- 3334 138. CLIA Clinical Laboratory Improvement Amendments.
- 3335 https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfCLIA/search.cfm.
- 3336 139. Mortimer, D. & Mortimer, S. T. Routine Application of CASA in Human Clinical Andrology and ART Laboratories. in *XIIIth International Symposium on Spermatology*
- 3338 (eds Björndahl, L., Flanagan, J., Holmberg, R. & Kvist, U.) 183–197 (Springer
- 3339 International Publishing, Cham, 2021). doi:10.1007/978-3-030-66292-9_26.
- 3340 140. Wang, C. *et al.* Use of at-home sperm concentration testing in a male hormonal contraceptive efficacy clinical trial. *Fertil. Steril.* **123**, 529–531 (2025).
- 3342 141. Hanson, B. M., Aston, K. I., Jenkins, T. G., Carrell, D. T. & Hotaling, J. M. The
- impact of ejaculatory abstinence on semen analysis parameters: a systematic review. *J. Assist. Reprod. Genet.* **35**, 213–220 (2018).
- 3345 142. Du, C., Li, Y., Yin, C., Luo, X. & Pan, X. Association of abstinence time with
- semen quality and fertility outcomes: a systematic review and dose–response metaanalysis. *Andrology* **12**, 1224–1235 (2024).
- 3348 143. Mayorga-Torres, J. M., Agarwal, A., Roychoudhury, S., Cadavid, A. & Cardona-
- Maya, W. D. Can a Short Term of Repeated Ejaculations Affect Seminal Parameters? *J. Reprod. Infertil.* **17**, 177–183 (2016).
- 3351 144. International Council for Harmonisation of Technical Requirements for
- Pharmaceuticals for Human Use (ICH). Guideline E1: The Extent of Population Exposure
- 3353 to Assess Clinical Safety for Drugs Intended for Long-Term Treatment of Non-Life-
- 3354 *Threatening Conditions*. https://www.ich.org/page/efficacy-guidelines (1994).
- 3355 145. Bureau of Metabolism, Oncology and Reproductive Sciences (BMORS). *Clinical Development of Steroidal Contraceptives Used by Women*.
- 3357 https://www.canada.ca/en/health-canada/services/drugs-health-products/drug-
- products/applications-submissions/guidance-documents/oral-
- 3359 contraceptives/guidance-industry-clinical-development-steroidal-contraceptives-
- 3360 used-women.html (2002).

- 3361 146. Guideline on Clinical Investigation of Steroid Contraceptives in Women.
- https://www.tga.gov.au/resources/resource/international-scientific-
- guidelines/guideline-clinical-investigation-steroid-contraceptives-women (2022).
- 3364 147. Sundaram, A. *et al.* Contraceptive Failure in the United States: Estimates from the 2006-2010 National Survey of Family Growth: contraceptive failure rates in the U.S.
- 3366 *Perspect. Sex. Reprod. Health* **49**, 7–16 (2017).
- 3367 148. Bradley, S. E. K., Polis, C. B., Bankole, A. & Croft, T. Global Contraceptive Failure Rates: Who Is Most at Risk? *Stud. Fam. Plann.* **50**, 3–24 (2019).
- 3369 149. Kaur, J., Rohini, D. V., Chang, L., Gugliotti, A. & Kretschmer, S. Assessment of demand for male contraceptives: A multi-country study. *Andrology* **12**, 1512–1524 (2024).
- 3372 150. Drugs@FDA: FDA-Approved Drugs: Opill.
- https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event=overview.process&ApplNo=017031.
- 3375 151. Zuniga, C. *et al.* Effectiveness and efficacy rates of progestin-only pills: A comprehensive literature review. *Contraception* **119**, 109925 (2023).
- 3377 152. Drug Approval Package: PHEXXI.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/208352Orig1s000TOC .cfm.
- 3380 153. Gerlinger, C., Endrikat, J., van der Meulen, E. A., Dieben, T. O. M. & Düsterberg, B. Recommendation for confidence interval and sample size calculation for the Pearl Index. *Eur. J. Contracept. Reprod. Health Care* **8**, 87–92 (2003).
- 3383 154. P, L. A. et al. Differences in reporting Pearl Indices in the United States and
- 3384 Europe: Focus on a 91-day extended-regimen combined oral contraceptive with low-
- dose ethinyl estradiol supplementation. Eur. J. Contracept. Reprod. Health Care Off. J.
- 3386 Eur. Soc. Contracept. **21**, (2016).
- 3387 155. Trussell, J. & Portman, D. The creeping pearl: why has the rate of contraceptive failure increased in clinical trials of combined hormonal contraceptive pills?

 3389 Contraception 88, 604–610 (2013).
- 3390 156. Portman, D., Eisenberg, D. L., Cason, P. & Howard, B. Variability in
- Contraceptive Clinical Trial Design and the Challenges in Making Comparisons Across Trials. *Adv. Ther.* **38**, 5425–5430 (2021).
- 3393 157. Amory, J. K. *et al.* Design of an international male contraceptive efficacy trial using a self-administered daily transdermal gel containing testosterone and segesterone acetate (Nestorone). *Contraception* **124**, 110064 (2023).
- 3396 158. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3397 NDA/BLA Multi-Disciplinary Review and Evaluation NDA 208352 Lactic Acid, Citric Acid, and Potassium Bitartrate (PHEXXI). (2018).
- 3399 159. Administration (TGA), T. G. Guideline on clinical investigation of steroid contraceptives in women | Therapeutic Goods Administration (TGA).
- 3401 https://www.tga.gov.au/resources/resource/international-scientific-
- 3402 guidelines/guideline-clinical-investigation-steroid-contraceptives-women (2022).

- 3403 160. Archer, D. F. *et al.* Efficacy of the 1-year (13-cycle) segesterone acetate and ethinylestradiol contraceptive vaginal system: results of two multicentre, open-label,
- 3405 single-arm, phase 3 trials. *Lancet Glob. Health* 7, e1054–e1064 (2019).
- 3406 161. Mauck, C. K., Dart, C., Thurman, A. & Creinin, M. D. Contraceptive efficacy
- should primarily be measured using life table pregnancy rates. *Contraception* **127**, 110140 (2023).
- 3409 162. O'Neill, R. T. & Temple, R. The Prevention and Treatment of Missing Data in
- Clinical Trials: An FDA Perspective on the Importance of Dealing With It. *Clin.*
- 3411 *Pharmacol. Ther.* **91**, 550–554 (2012).
- 3412 163. Eisenberg, D. L. et al. Knowledge of contraceptive effectiveness. *Am. J. Obstet.*
- 3413 *Gynecol.* **206**, 479.e1–9 (2012).
- 3414 164. Frost, J. J., Lindberg, L. D. & Finer, L. B. Young adults' contraceptive knowledge,
- norms and attitudes: associations with risk of unintended pregnancy. *Perspect. Sex.*
- 3416 Reprod. Health 44, 107–116 (2012).
- 3417 165. Timing of Sexual Intercourse in Relation to Ovulation Effects on the
- Probability of Conception, Survival of the Pregnancy, and Sex of the Baby | New
- England Journal of Medicine.
- 3420 https://www.nejm.org/doi/full/10.1056/NEJM199512073332301.
- 3421 166. Konishi, S., Saotome, T. T., Shimizu, K., Oba, M. S. & O'Connor, K. A. Coital
- Frequency and the Probability of Pregnancy in Couples Trying to Conceive Their
- First Child: A Prospective Cohort Study in Japan. *Int. J. Environ. Res. Public. Health* **17**, 4985 (2020).
- 3425 167. Stanford, J. B. & Dunson, D. B. Effects of Sexual Intercourse Patterns in Time to Pregnancy Studies. *Am. J. Epidemiol.* **165**, 1088–1095 (2007).
- 3427 168. John K. Amory. The probability of pregnancy in 100 episodes of sexual
- intercourse: A measure of male contraceptive performance. *Andrology* andr.13831 (2024) doi:10.1111/andr.13831.
- 3430 169. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3431 E19 A Selective Approach to Safety Data Collection in Specific Late-Stage Pre-Approval or
- 3432 Post-Approval Clinical Trials. https://www.fda.gov/regulatory-information/search-
- fda-guidance-documents/e19-selective-approach-safety-data-collection-specific-latestage-pre-approval-or-post-approval (2022).
- 3435 170. European Medicines Agency (EMA). Strategies to Identify and Mitigate Risks for First-in-Human and Early Clinical Trials with Investigational Medicinal Products -
- 3437 *Scientific Guideline*. https://www.ema.europa.eu/en/strategies-identify-mitigate-
- 3438 risks-first-human-early-clinical-trials-investigational-medicinal-products-scientific-
- 3439 guideline (2018).
- 3440 171. Cameron, N. A., Blyler, C. A. & Bello, N. A. Oral Contraceptive Pills and
- 3441 Hypertension: A Review of Current Evidence and Recommendations. *Hypertens*.
- 3442 *Dallas Tex* 1979 **80**, 924–935 (2023).

- 3443 172. Campo-Engelstein, L., Kaufman, S. & Parker, W. M. Where Is the Pill for the
- "Reproductive Man?": A Content Analysis of Contemporary US Newspaper Articles.
- 3445 *Men Masculinities* **22**, 360–379 (2019).
- 3446 173. Kidula, N., Nguyen, B. T., Habib, N. & Kiarie, J. The impact of male
- 3447 contraception on global sexual and reproductive health and rights. *Contraception*
- 3448 110811 (2025) doi:10.1016/j.contraception.2025.110811.
- 174. Kavanaugh, M. L., Pliskin, E. & Jerman, J. Use of concurrent multiple methods of contraception in the United States, 2008 to 2015. *Contracept. X* **3**, 100060 (2021).
- 3451 175. Campelia, G. D., Adashi, E. Y. & Amory, J. K. Shared risk and shared
- responsibility: the ethics of male contraceptives. *Andrology* **12**, 1605–1609 (2024).
- 3453 176. Moreau, C., Cleland, K. & Trussell, J. Contraceptive discontinuation attributed to method dissatisfaction in the United States. *Contraception* **76**, 267–272 (2007).
- 3455 177. Hing, E. & Albert, M. NCHS Data Brief 234: State Variation in Preventive Care Visits, by Patient Characteristics, 2012.
- 3457 https://www.cdc.gov/nchs/products/databriefs.htm (2016).
- 3458 178. Nelson, H. D. et al. Associations of Unintended Pregnancy With Maternal and
- 3459 Infant Health Outcomes: A Systematic Review and Meta-analysis. *JAMA* **328**, 1714– 1729 (2022).
- 3461 179. Barbuscia, A., Pailhé, A. & Solaz, A. Unplanned births and their effects on
- maternal Health: Findings from the Constances Cohort. *Soc. Sci. Med.* 1982 **361**, 117350 (2024).
- 3464 180. Smith, I. et al. Associations between unintended fatherhood and paternal mental
- health problems: A systematic review and meta-analysis. *J. Affect. Disord.* **339**, 22–32 (2023).
- 3467 181. Ticona, D. M., Huanco, D. & Ticona-Rendón, M. B. Impact of unplanned
- pregnancy on neonatal outcomes: findings of new high-risk newborns in Peru. *Int.*
- 3469 *Health* **16**, 52–60 (2024).
- 3470 182. Shreffler, K. M., Spierling, T. N., Jespersen, J. E. & Tiemeyer, S. Pregnancy
- intendedness, maternal-fetal bonding, and postnatal maternal-infant bonding. *Infant Ment. Health J.* **42**, 362–373 (2021).
- 3473 183. Kaneko, H. et al. The effects of unintended pregnancy on maternal bonding
- impairment among Japanese mothers: a longitudinal study from pregnancy to one
- month postpartum. *BMC Pregnancy Childbirth* **25**, 540 (2025).
- 3476 184. Taylor, J. S. & Cabral, H. J. Are women with an unintended pregnancy less likely
- 3477 to breastfeed? *J. Fam. Pract.* **51**, 431–436 (2002).
- 3478 185. Chinebuah, B. & Pérez-Escamilla, R. Unplanned pregnancies are associated with
- less likelihood of prolonged breast-feeding among primiparous women in Ghana. *J.*
- 3480 *Nutr.* **131**, 1247–1249 (2001).
- 3481 186. World Health Organization. Maternal Mortality Fact Sheet.
- 3482 https://www.who.int/news-room/fact-sheets/detail/maternal-mortality (2025).

- 3483 187. Fink, D. A. et al. Trends in Maternal Mortality and Severe Maternal Morbidity
- 3484 During Delivery-Related Hospitalizations in the United States, 2008 to 2021. *JAMA*
- 3485 Netw. Open 6, e2317641 (2023).
- 3486 188. Hoyert, D. L. Maternal Mortality Rates in the United States, 2023. in *NCHS Health* 3487 *E Stats* (National Center for Health Statistics (US), Hyattsville (MD), 2024).
- Trends in maternal mortality 2000 to 2020: estimates by WHO, UNICEF, UNFPA,
 World Bank Group and UNDESA/Population Division.
- 3490 https://www.who.int/publications/i/item/9789240068759.
- 3491 190. Speidel, J. J. & Grossman, R. A. Addressing global health, economic, and environmental problems through family planning. *Obstet. Gynecol.* **117**, 1394–1398 (2011).
- 3494 191. Sully, E. A. et al. Adding It Up: Investing in Sexual and Reproductive Health 2019. 3495 https://www.guttmacher.org/report/adding-it-up-investing-in-sexual-
- reproductive-health-2019 (2020).
- 3497 192. Juhaeri, J. Benefit-risk evaluation: the past, present and future. *Ther. Adv. Drug* 3498 *Saf.* **10**, 2042098619871180 (2019).
- 193. Center for Biologics Evaluation and Research & Center for Drug Evaluation and
 Research, US Food and Drug Administration. Benefit-Risk Assessment for New Drug
 and Biological Products. https://www.fda.gov/regulatory-information/search-fdaguidance-documents/benefit-risk-assessment-new-drug-and-biological-products
- 3503 (2023).
- 3504 194. Center for Devices and Radiological Health & Center for Biologics Evaluation 3505 and Research, US Food and Drug Administration. *Factors to Consider When Making*
- 3506 Benefit-Risk Determinations in Medical Device Premarket Approval and De Novo
- 3507 Classifications. https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/factors-consider-when-making-benefit-risk-determinations-medicaldevice-premarket-approval-and-de (2019).
- 3510 195. European Medicines Agency (EMA). Benefit-Risk Methodology Project. Work 3511 Package 4 Report: Benefit-Risk Tools and Processes.
- https://www.ema.europa.eu/en/documents/report/benefit-risk-methodology-project-work-package-4-report-benefit-risk-tools-and-processes_en.pdf (2012).
- 3514 196. Wiley, K. E., Zuo, Y., Macartney, K. K. & McIntyre, P. B. Sources of pertussis infection in young infants: A review of key evidence informing targeting of the cocoon strategy. *Vaccine* **31**, 618–625 (2013).
- 3517 197. Campelia, G. D., Adashi, E. Y. & Amory, J. K. Shared risk and shared responsibility: the ethics of male contraceptives. *Andrology* **n/a**, (2024).
- 3519 198. US Food and Drug Administration. Drug Approval Package: NEXTSTELLIS.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2021/214154Orig1s000TOC .cfm (2021).
- 3522 199. US Food and Drug Administration. Drug Approval Package: TWIRLA.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/204017Orig1s000TOC
- 3524 .cfm (2020).

- 3525 200. US Food and Drug Administration. Drug Approval Package: PHEXXI.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2020/208352Orig1s000TOC .cfm (2020).
- 3528 201. European Medicines Agency (EMA). Product Information: Drovelis.
- 3529 https://www.ema.europa.eu/en/medicines/human/EPAR/drovelis (2021).
- 3530 202. US Food and Drug Administration. Drug Approval Package: Viagra.
- https://www.accessdata.fda.gov/drugsatfda_docs/NDA/98/viagra/viagra_toc.cfm (1998).
- 3533 203. US Food and Drug Administration. Drug Approval Package: Cialis.
- 3534 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-368_Cialis.cfm (2004).
- 3536 204. US Food and Drug Administration. Drug Approval Package: Levitra.
- 3537 https://www.accessdata.fda.gov/drugsatfda_docs/nda/2003/21-400_Levitra.cfm (2002).
- 3539 205. European Medicines Agency (EMA). Product Information: Levitra.
- https://www.ema.europa.eu/en/medicines/human/EPAR/levitra (2025).
- 3541 206. DiGiorgio, L. & Sadeghi-Nejad, H. Off label therapies for testosterone replacement. *Transl. Androl. Urol.* **5**, 844–849 (2016).
- 3543 207. Irwig, M. S. et al. Off-Label Use and Misuse of Testosterone, Growth Hormone,
- 3544 Thyroid Hormone, and Adrenal Supplements: Risks and Costs of a Growing
- Problem. Endocr. Pract. Off. J. Am. Coll. Endocrinol. Am. Assoc. Clin. Endocrinol. 26, 340–3546 353 (2020).
- 3547 208. US Food and Drug Administration. Drug Approval Package: Testosterone 3548 Enanthate Injection.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/2019/209863Orig1s000TOC .cfm (2019).
- 3551 209. US Food and Drug Administration. Drug Approval Package: Propecia.
- https://www.accessdata.fda.gov/drugsatfda_docs/nda/97/020788_propecia_toc.cf m (2003).
- 3554 210. European Medicines Agency (EMA). Finasteride- and dutasteride-containing medicinal products referral.
- https://www.ema.europa.eu/en/medicines/human/referrals/finasteridedutasteride-containing-medicinal-products (2025).
- 3558 211. European Medicines Agency (EMA). Multi-stakeholder workshop: Patient
- 3559 experience data in medicines development and regulatory decision-making.
- 3560 https://www.ema.europa.eu/en/events/multi-stakeholder-workshop-patient-
- 3561 experience-data-medicines-development-and-regulatory-decision-making (2022).
- 3562 212. Rupinski, K. *et al.* Make Her Voice Count: Understanding the Use of Patient-
- Reported Outcomes in Contraceptive Trials. *Value Health* **27**, S310 (2024).
- 3564 213. Center for Devices and Radiological Health & Center for Biologics Evaluation
- and Research, US Food and Drug Administration. Patient Preference Information -
- Voluntary Submission, Review in Premarket Approval Applications, Humanitarian Device

- 3567 Exemption Applications, and De Novo Requests, and Inclusion in Decision Summaries and
- 3568 Device Labeling. https://www.fda.gov/regulatory-information/search-fda-guidance-
- documents/patient-preference-information-voluntary-submission-review-
- 3570 premarket-approval-applications (2016).
- 3571 214. Faulkner, S. D., Somers, F., Boudes, M., Nafria, B. & Robinson, P. Using Patient
- Perspectives to Inform Better Clinical Trial Design and Conduct: Current Trends and Plants Directions Plants Med 27, 120, 129 (2022)
- 3573 Future Directions. *Pharm. Med.* **37**, 129–138 (2023).
- 3574 215. Pinto, C. A. et al. Current Practices and Challenges When Submitting Patient
- Experience Data for Regulatory Decisions by the US Food and Drug Administration:
- 3576 An Industry Survey. *The Patient* **17**, 147–159 (2024).
- 3577 216. Center for Drug Evaluation and Research, US Food and Drug Administration.
- 3578 FDA Patient-Focused Drug Development Guidance Series for Enhancing the
- 3579 Incorporation of the Patient's Voice in Medical Product Development and Regulatory
- Decision Making. https://www.fda.gov/drugs/development-approval-process-
- drugs/fda-patient-focused-drug-development-guidance-series-enhancing-
- incorporation-patients-voice-medical (2025).

3586

- 3583 217. Abbe, C. & Roxby, A. C. Assessing safety in hormonal male contraception: a
- 3584 critical appraisal of adverse events reported in a male contraceptive trial. *BMJ Sex.*
- 3585 Reprod. Health bmjsrh-2018-200206 (2019) doi:10.1136/bmjsrh-2018-200206.